Skip to main content

Advertisement

Log in

3D foot scanning using multiple RealSense cameras

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

3D scanning of the foot is of great significance for footwear customization, intelligent shoe size recommendation and foot disease diagnosis. In this paper, we propose a 3D foot scanning system that consists of four Intel RealSense cameras and one host PC and scans both feet simultaneously. A novel calibration method that is based on a Tower-type block was proposed for calculating the extrinsic parameters of multiple RGB-Depth cameras. The Tower-type block was designed to realize the automatic execution of the multi-camera calibration process and reduce the operational complexity. This paper introduced the complete procedure of the system, including partial view scanning, point cloud filtering, registration, and non-visible area filling, reconstruction and foot measurement. The presented experimental results demonstrated that the proposed methods were efficient and versatile approaches for 3D foot scanning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Alexiadis D, Zarpalas D (2015) Daras P fast and smooth 3D reconstruction using multiple RGB-depth sensors. Visual Communications and Image Processing Conference, In, pp 173–176

    Google Scholar 

  2. Alexiadis DS, Zarpalas D, Daras P (2013) Real-time, full 3-D reconstruction of moving foreground objects from multiple consumer depth cameras. Ieee T Multimedia 15(2):339–358. https://doi.org/10.1109/Tmm.2012.2229264

    Article  Google Scholar 

  3. Atherton TJ, Kerbyson DJ (1999) Size invariant circle detection. Image Vis Comput 17(11):795–803. https://doi.org/10.1016/S0262-8856(98)00160-7

    Article  Google Scholar 

  4. Besl PJ, Mckay ND (2002) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256

    Article  Google Scholar 

  5. Carfagni M, Furferi R, Governi L, Servi M, Uccheddu F, Volpe Y (2017) On the performance of the Intel SR300 depth camera: metrological and critical characterization. IEEE Sensors J 17(14):4508–4519. https://doi.org/10.1109/jsen.2017.2703829

    Article  Google Scholar 

  6. Cui Y, Stricker D (2011) 3D body scanning with one kinect. In: International Conference on 3d Body Scanning Technologies, Lugano, Switzerland, 25–26 October, 2011. pp 121–129

  7. Dou M, Taylor J, Fuchs H, Fitzgibbon A, Izadi S (2015) 3D scanning deformable objects with a single RGBD sensor. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p 493–501. https://doi.org/10.1109/CVPR.2015.7298647

  8. Gao F, Wang Q, Geng W, Pan Y (2011) Acquisition of time-varying 3D foot shapes from video. SCIENCE CHINA Inf Sci 54(11):2256–2268. https://doi.org/10.1007/s11432-011-4361-1

    Article  Google Scholar 

  9. Lee Y-C, Lin G, Wang M-JJ (2014) Comparing 3D foot scanning with conventional measurement methods. Journal of Foot and Ankle Research 7(1):44. https://doi.org/10.1186/s13047-014-0044-7

    Article  Google Scholar 

  10. Liu C, Liu C (2017) Nonlinear gauss-Helment model and its solution for 3D coordinate transformation. Science of Surveying and Mapping 42(5):118–123

    Google Scholar 

  11. Liu ZB, Qin HL, Bu SH, Yan M, Huang JX, Tang XJ, Han JW (2015) 3D real human reconstruction via multiple low-cost depth cameras. Signal Process 112(C):162–179. https://doi.org/10.1016/j.sigpro.2014.10.021

    Article  Google Scholar 

  12. Ma X, Luximon A (2014) 3D foot prediction method for low cost scanning. Int J Ind Ergon 44(6):866–873. https://doi.org/10.1016/j.ergon.2014.08.006

    Article  Google Scholar 

  13. Maimone A, Fuchs H (2011) Encumbrance-free telepresence system with real-time 3D capture and display using commodity depth cameras. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, Basel. vol 1. pp 137–146. https://doi.org/10.1109/ISMAR.2011.6092379

  14. Maruyama M, Tabata S, Watanabe Y, Ishikawa M (2018) Multi-pattern embedded phase shifting using a high-speed projector for fast and accurate dynamic 3D measurement. In: 2018 IEEE winter conference on applications of computer vision (WACV), 12–15 March 2018. pp 921–929. https://doi.org/10.1109/WACV.2018.00106

  15. Molfino R, Zoppi M (2005) Mass customized shoe production: a highly reconfigurable robotic device for handling limp material. IEEE Robot Autom Mag 12(2):66–76. https://doi.org/10.1109/MRA.2005.1458327

  16. Novak B, Babnik A, Mozina J, Jezersek M (2014) Three-dimensional foot scanning system with a rotational laser-based measuring head. Stroj Vestn-J Mech E 60(11):685–693. https://doi.org/10.5545/sv-jme.2014.1950

    Article  Google Scholar 

  17. Otsu N (2007) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

  18. Pesce M, Galantucci LM, Percoco G, Lavecchia F (2015) A low-cost multi camera 3D scanning system for quality measurement of non-static subjects. Proc Cirp 28:88–93. https://doi.org/10.1016/j.procir.2015.04.015

    Article  Google Scholar 

  19. Pioaru I (2017) Visualizing virtual reality imagery through digital holography. In: 2017 International Conference on Cyberworlds (CW), 20–22 Sept. 2017. pp 241–244. https://doi.org/10.1109/CW.2017.50

  20. Psota P, Lédl V, Kaván F, Mokrý P, Matoušek O (2017) Surface profilometry by digital holography. In: 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 12–15 Sept. 2017. pp 1–5. https://doi.org/10.1109/ETFA.2017.8247748

  21. Rout N, Zhang YF, Khandual A, Luximon A (2010) 3D foot scan to custom shoe last. Special Issue of IJCCT 2010(1):5

    Google Scholar 

  22. Seo SG, Lee DY, Kim J-B, Kim SH, Park HS, Yoo HJ, Kim SJ, Kim J, Lee KM, Chung CY, Choi IH (2014) Gender differences in segmental foot motions during gait using 3D multi-segment foot model. J Foot Ankle Res 7(1):A75. https://doi.org/10.1186/1757-1146-7-S1-A75

  23. Shi Z, Yu L, A AE-LA, Niu X (2012) Skeleton modulated topological perception map for rapid viewpoint selection. IEICE Trans Inf Syst 95(10):2585–2588. https://doi.org/10.1587/transinf.E95.D.2585

    Article  Google Scholar 

  24. Shi Z, Yu L, El-Latif AAA, Le D, Niu X (2012) A kinematics significance based skeleton map for rapid viewpoint selection. Res J Appl Sci Eng Tech 4(17):2887–2892

  25. Tong J, Zhou J, Liu L, Pan Z, Yan H (2012) Scanning 3D full human bodies using Kinects. IEEE Trans Vis Comput Graph 18(4):643–650

    Article  Google Scholar 

  26. Van den Herrewegen I, Cuppens K, Broeckx M, De Raeve E, Vertommen H, Mertens M, Peeraer L (2012) Foot inter-segment angles and rotation axes based on dynamic 3D surface point clouds. J Biomech 45:S197

  27. Van den Herrewegen I, Cuppens K, Broeckx M, Barisch-Fritz B, Vander Sloten J, Leardini A, Peeraer L (2014) Dynamic 3D scanning as a markerless method to calculate multi-segment foot kinematics during stance phase: methodology and first application. J Biomech 47(11):2531–2539. https://doi.org/10.1016/j.jbiomech.2014.06.010

    Article  Google Scholar 

  28. Wan FKW, Yick K-L, Yu WWM (2017) Validation of a 3D foot scanning system for evaluation of forefoot shape with elevated heels. Measurement 99:134–144. https://doi.org/10.1016/j.measurement.2016.12.005

    Article  Google Scholar 

  29. Weiss A, Hirshberg D, Black MJ (2013) Home 3D body scans from a single Kinect. In: Fossati A, Gall J, Grabner H, Ren X, Konolige K (eds) Consumer depth cameras for computer vision: research topics and applications. Springer London, London, pp 99–117. https://doi.org/10.1007/978-1-4471-4640-7_6

    Chapter  Google Scholar 

  30. Witana CP, Xiong S, Zhao J, Goonetilleke RS (2006) Foot measurements from three-dimensional scans: a comparison and evaluation of different methods. Int J Ind Ergon 36(9):789–807. https://doi.org/10.1016/j.ergon.2006.06.004

    Article  Google Scholar 

  31. Wu G, Li D, Hu P, Zhong Y, Pan N (2016) Automatic foot scanning and measurement based on multiple RGB-depth cameras. Text Res J 88(2):1–15

    Google Scholar 

  32. Wu G, Li D, Zhong YQ, Hu PP (2017) A study on improving the calibration of body scanner built on multiple RGB-depth cameras. Int J Cloth Sci Tech 29(3):314–329. https://doi.org/10.1108/Ijcst-05-2016-0051

    Article  Google Scholar 

  33. Xiong SP, Zhao JH, Jiang ZH, Dong M (2010) A computer-aided design system for foot-feature-based shoe last customization. Int J Adv Manuf Tech 46(1–4):11–19. https://doi.org/10.1007/s00170-009-2087-7

    Article  Google Scholar 

  34. Xiong S, Li Y, Zhu Y, Qian J, Dong Y (2010) Foot measurements from 2D digital images. In: 2010 IEEE International Conference on Industrial Engineering and Engineering Management, 7–10 Dec. 2010. pp 497–501. :https://doi.org/10.1109/IEEM.2010.5674498

  35. Závoti J, Kalmár J (2016) A comparison of different solutions of the Bursa–wolf model and of the 3D, 7-parameter datum transformation. Acta Geodaetica Et Geophysica 51(2):245–256

    Article  Google Scholar 

  36. Zhang C, Zhang Z (2011) Calibration between depth and color sensors for commodity depth cameras. In: 2011 IEEE International Conference on Multimedia and Expo, 11–15 July 2011. pp 1–6. https://doi.org/10.1109/ICME.2011.6012191

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munan Yuan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, M., Li, X., Xu, J. et al. 3D foot scanning using multiple RealSense cameras. Multimed Tools Appl 80, 22773–22793 (2021). https://doi.org/10.1007/s11042-020-09839-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09839-w

Keywords

Navigation