Skip to main content
Log in

A new reversible data hiding in transform domain

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Reversible watermarking is a technique permitting lossless data hiding. In such a method, the lossless recovering of both watermark and host image is essential. For some applications, such as medical imaging and military systems, it is so vital not only to recover the host image exactly but also to increase security. To obtain these goals, a new reversible watermarking scheme is presented. Since embedding in a transform domain improves security, the proposed method uses Reversible Walsh-Hadamard Transform (RWHT) to commute the host image. Afterward, Singular Value Decomposition (SVD) technique is performed on the transformed image for watermark embedding. For a full recovery, additional information is encoded using Quick Response (QR) code, which is embedded by a prediction-based method. To evaluate the performance of the proposed method, a set of comparative experiments is done. The obtained results confirm the effectiveness of the proposed method in both visual quality and capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Al-Qershi OM, Khoo BE (2013) Two-dimensional difference expansion (2D-DE) scheme with a characteristics-based threshold. Signal Process 93(1):154–162

    Article  Google Scholar 

  2. An L, Gao X, Li X, Tao D, Cheng D, Li J (2012) Robust reversible watermarking via clustering and enhanced pixel-wise masking. IEEE Trans Image Process 21(8):3598–3611

    Article  MathSciNet  Google Scholar 

  3. An L, Gao X, Yuan Y, Tao D, Cheng D, Ji F (2012) Content-adaptive reliable robust lossless data embedding. Neurocomputing 79:1–11

    Article  Google Scholar 

  4. An L, Gao X, Yuan Y, Tao D (2012) Robust lossless data hiding using clustering and statistical quantity histogram. Neurocomputing 77:1–11

    Article  Google Scholar 

  5. Awrangjeb M, Kankanhalli MS (2005) Reversible watermarking using a perceptual model. J Electron Imaging 14(1):013014

    Article  Google Scholar 

  6. Bajaj A (2014) Robust and reversible digital image watermarking technique based on RDWT-DCT-SVD. IEEE Int Conf Adv Eng Technol Res. https://doi.org/10.1109/ICAETR.2014.7012955

  7. Barton JM (1997) Method and apparatus for embedding authentication information within digital data. U S Patent 5646:997

    Google Scholar 

  8. Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized LSB data embedding. IEEE Trans Image Process 14(2):253–266

    Article  Google Scholar 

  9. Chan YK, Chen WT, Yu SS, Ho YA, Tsai CS, Chu YP (2009) A HDWT-based reversible data hiding method. J Syst Softw 82:411–421

    Article  Google Scholar 

  10. Chang CC, Pai PY, Yeh CM, Chan YK (2010) A high payload frequency-based reversible image hiding method. Inf Sci 180:2286–2298

    Article  Google Scholar 

  11. Du Y, Zhang T (2009) A reversible and fragile watermarking algorithm based on DCT, Proc IEEE Int Conf Artif Intell Comput Intell, 301–304

  12. Fridrich J, Goljan M, Rui D (2001) Invertible authentication. In security and watermarking of multimedia contents III, Proc. SPIE 3971:197–208

    Google Scholar 

  13. Gujjunoori S, Oruganti M (2019) Defference expansion based reversible data embedding and edge detection. Multimed Tools Appl 78:25889–25917. https://doi.org/10.1007/s11042-019-07767-y

    Article  Google Scholar 

  14. Gao X, An L, Yuan Y, Tao D, Li X (2011) Lossless data embedding using generalized statistical quantity histogram. IEEE Trans Circuits Syst Video Technol 21(8):1061–1070

    Article  Google Scholar 

  15. Gao L, Gao T, Sheng G, Cao Y, Fan L (2012) A new reversible watermarking scheme based on integer DCT for medical images, Proc IEEE Int Conf Wavelet Anal Pattern Recogn 33–37

  16. He W, Cai Z, Wang Y (2020) Flexible spatial location- based PVO predictor for high-fidelity reversible data hiding. Inf Sci 520:431–444. https://doi.org/10.1016/j.ins.2020.02.003

    Article  Google Scholar 

  17. Huang HC, Chang FC (2016) Multi-tier and multi-bit reversible data hiding with contents characteristics. J Inf hid Multimed Signal Process 7:11–20

    Google Scholar 

  18. Kamran AK, Malik SA (2014) A high capacity reversible watermarking approach for authenticating images: exploiting down-sampling, histogram processing, and block selection. Inf Sci 256:162–183

    Article  Google Scholar 

  19. Kim KS, Lee MJ, Lee HY, Lee HK (2009) Reversible data hiding exploiting spatial correlation between subsampled images. Pattern Recogn 42:3083–3096

    Article  Google Scholar 

  20. Ko H, Huang C, Horng G, WANG S (2019) Robust and blind image watermarking in DCT domain using inter-block coefficient correlation. Inf Sci 517:128–147. https://doi.org/10.1016/j.ins.2019.11.005

    Article  Google Scholar 

  21. Kumar M, Agrawal S, Pant T (2016) SVD-based fragile reversible data hiding using DWT Adv Intell Syst Comput 436, DOI https://doi.org/10.1007/978-981-10-0448-3_62

  22. Kumar R, Jung K (2020) Robust reversible data hiding scheme based on two-layer embedding strategy. Inf Sci 512:96–107

    Article  MathSciNet  Google Scholar 

  23. Lamarche L, Liu Y, Zhao J, Ave KE, Kn C (2006) Flaw in SVD-based watermarking. IEEE CCECE/CCGEI, 2082–2085

  24. Li C, Yang R, Liu Z, Li J, Guo Z (2016) Semi-fragile self-recoverable watermarking scheme for face image protection. Comput Electr Eng 54:1–10. https://doi.org/10.1016/j.compeleceng.2016.01.026

    Article  Google Scholar 

  25. Lin Y-K (2012) High capacity reversible data hiding scheme based upon discrete cosine transformation. J Syst Softw 85:2395–2404

    Article  Google Scholar 

  26. Maheswari SU, Hemath DJ (2015) Frequency domain QR code based image steganography using Fresnelet transform. Int J Electron Connun 69:539–544

    Article  Google Scholar 

  27. Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16(3):354–362

    Article  Google Scholar 

  28. Pakdaman Z, Saryazdi S, Nezamabadi-pour H (2016) A prediction based reversible image watermarking in Hadamard domain. Multimed Tools Appl 76:8517–8545. https://doi.org/10.1007/s11042-016-3490-3

    Article  Google Scholar 

  29. Peng F, Zhao Y, Zhang X, Long M, Pan W (2020) Reversible data hiding based on RSBEMD coding and adaptive multi-segmant left and right histogram shifting. Signal Process Image Commun 81:115715

    Article  Google Scholar 

  30. Qin C, He Z, Luo X, Dong J (2018) Reversible data hiding in encrypted image with separable capability and high embedding capacity. Inf Sci 465:285–304. https://doi.org/10.1016/j.ins.2018.07.021

    Article  Google Scholar 

  31. Sadek RA (2012) SVD based image processing applications: state of the art, contributions and research challenges. Int J Adv Comput Sci Appl 3(7):26–34

    Google Scholar 

  32. Samee R, Riaz M, Ghafoor A (2018) Adaptive interpolation and segmentationbased reversible image watermarking. Multimed Tools Appl 77:26821–26843. https://doi.org/10.1007/s11042-018-5890-z

    Article  Google Scholar 

  33. Sarukhanyan H, Agaian S, Egiazarian K, Astola J (2007) Reversible Hadamard transform. Facta Univ (NIS) 20(3):309–330

    Article  Google Scholar 

  34. Souad B, Mohamed FK (2014) Reversible combined R-DWT-DCT-SVD watermarking scheme. Int J com dig sys 3:237–245

    Article  Google Scholar 

  35. Thodi DM, Rodriguez JJ (2004) Reversible watermarking by prediction-error expansion, Image Ana Interpret, 6th IEEE southwest symposium on, 21–25

  36. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circ Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  37. Wai CK, Ahmad NA (2014) Robust DWT-SVD image watermarking with hybrid technique for embedding data in all frequencies. AIP Conf Proc DOI https://doi.org/10.1063/1.4887593

  38. Wang N, Men C (2012) Reversible fragile watermarking for 2-D vector map authentication with localization. Comput Aided Des 44:320–330

    Article  Google Scholar 

  39. Wu X, Liang X, Liu H, Huang J, Qiu G (2006) Reversible semi-fragile image authentication using zernike moments and integer Wavelete transform, digital rights management. Technologies, issues, challenges and systems. LNCS in Comput Sci 3919:135–145

    Google Scholar 

  40. Xuan G, Yang C, Zhen Y, Shi YQ, Ni Z (2004) Reversible data hiding using integer wavelet transform and companding technique. Digit Watermark 3304:115–124

    Article  Google Scholar 

  41. Zheng H, Wang C, Wang J, Xiang S (2019) A new reversible watermarking scheme using the content-adaptive block size for prediction. Signal Process 164:74–83. https://doi.org/10.1016/j.sigpro.2019.05.035

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Nezamabadi-pour.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakdaman, Z., Nezamabadi-pour, H. & Saryazdi, S. A new reversible data hiding in transform domain. Multimed Tools Appl 80, 8931–8955 (2021). https://doi.org/10.1007/s11042-020-10058-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10058-6

Keywords

Navigation