Abstract
Performance of deep convolutional neural network (CNN) has shown tremendous improvement when applied to various image classifications including hyperspectral images (HSIs). However, CNN requires a large number of labeled samples to train its parameters in different layers, the scarcity of which, in HSIs leads to overfitting problem. Prior integration of spectral-spatial information acts complementary to the deep features resulting in reduced computational load of deep CNN and also helps in mitigating overfitting problem. In this paper, we propose a CNN based classification model that first integrates spectral-spatial information by using an extended attribute profile constructed by selecting suitable threshold values automatically. Then, the constructed spectral-spatial features are utilized by 2D or 3D deep CNN models for classification. Experimental results on three real HSI data sets show that the proposed model can successfully integrate the individual strength of both the automatic extended attribute profile and deep CNN, and provide better classification accuracies.










Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
References
Aptoula E, Can Ozdemir M, Yanikoglu B (2016) Deep learning with attribute profiles for hyperspectral image classification. IEEE Geosci Remote Sens Lett 13(12):1970–1974
Benediktsson JA, Aevar Palmason J, R Sveinsson J (2005) Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans Geosci Remote Sens 43(3):480–491
Bhardwaj K, Patra S (2018) An unsupervised technique for optimal feature selection in attribute profiles for spectral-spatial classification of hyperspectral images. ISPRS J Photogramm Remote Sens 138:139–150
Bhardwaj K, Patra S, Bruzzone L (2019) Threshold-free attribute profile for classification of hyperspectral images. IEEE Trans Geosci Remote Sens 57(10):7731–7742
Cao C, Deng L, Duan W, Xiao F, Yang W, Hu K (2019) Hyperspectral image classification via compact-dictionary-based sparse representation. Multimedia Tools and Applications 78(11):15011–15031
Cavallaro G, Falco N, Dalla Mura M, Benediktsson JA (2017) Automatic attribute profiles. IEEE Trans Image Process 26(4):1859–1872
Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7(6):2094–2107
Chen Y, Zhao X, Jia X (2015) Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8(6):2381–2392
Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251
Chen Y, Zhu L, Ghamisi P, Jia X, Li G, Tang L (2017) Hyperspectral images classification with Gabor filtering and convolutional neural network. IEEE Geosci Remote Sens Lett 14(12):2355–2359
Dalla Mura M, Benediktsson JA, Waske B, Bruzzone L (2010) Extended profiles with morphological attribute filters for the analysis of hyperspectral data. Int J Remote Sens 31(22):5975–5991
Dalla Mura M, Benediktsson JA, Waske B, Bruzzone L (2010) Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans Geosci Remote Sens 48(10):3747–3762
Das A, Patra S (2020) A rough-GA based optimal feature selection in attribute profiles for classification of hyperspectral imagery. Soft Comput 24:12569–12585
Das A, Bhardwaj K, Patra S (2018) Morphological complexity profile for the analysis of hyperspectral images. In: 2018 4th international conference on recent advances in information technology (RAIT), IEEE, pp 1–6
Das A, Bhardwaj K, Patra S (2019) Automatic attribute profiles for spectral-spatial classification of hyperspectral images. In: International conference on pattern recognition and machine intelligence, Springer, pp 13–21
Ghamisi P, Benediktsson JA, Sveinsson JR (2014) Automatic spectral–spatial classification framework based on attribute profiles and supervised feature extraction. IEEE Trans Geosci Remote Sens 52(9):5771–5782
Ghamisi P, Dalla Mura M, Benediktsson JA (2015) A survey on spectral–spatial classification techniques based on attribute profiles. IEEE Trans Geosci Remote Sens 53(5):2335–2353
Ghamisi P, Plaza J, Chen Y, Li J, J Plaza A (2017) Advanced spectral classifiers for hyperspectral images: a review. IEEE Geoscience and Remote Sensing Magazine 5(1):8–32
Ghamisi P, Maggiori E, Li S, Souza R, Tarablaka Y, Moser G, De Giorgi A, Fang L, Chen Y, Chi M, et al. (2018) New frontiers in spectral-spatial hyperspectral image classification: the latest advances based on mathematical morphology, Markov random fields, segmentation, sparse representation, and deep learning. IEEE Geoscience and Remote Sensing Magazine 6 (3):10–43
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
Holzwarth S, Muller A, Habermeyer M, Richter R, Hausold A, Thiemann S, Strobl P (2003) HySens-DAIS 7915/ROSIS imaging spectrometers at DLR. In: Proceedings of the 3rd EARSeL workshop on imaging spectroscopy, pp 3–14
Hu W, Huang Y, Wei L, Zhang F, Li H (2015) Deep convolutional neural networks for hyperspectral image classification. Journal of Sensors 2015:1–12. Article ID 3632943
IEEE GRSS (2013) Image analysis and data fusion. [online]. Available: http://www.grss-ieeeorg/community/technicalcommittees/data-fusion/
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
Lagrange A, Le Saux B, Beaupere A, Boulch A, Chan-Hon-Tong A, Herbin S, Randrianarivo H, Ferecatu M (2015) Benchmarking classification of earth-observation data: from learning explicit features to convolutional networks. In: Geoscience and remote sensing symposium (IGARSS), 2015 IEEE international, IEEE, pp 4173–4176
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
Li S, Song W, Fang L, Chen Y, Ghamisi P, Benediktsson JA (2019) Deep learning for hyperspectral image classification: an overview. IEEE Trans Geosci Remote Sens 57(9):6690–6709
Li T, Zhang J, Zhang Y (2014) Classification of hyperspectral image based on deep belief networks. In: IEEE International conference on image processing (ICIP), 2014, IEEE, pp 5132–5136
Li W, Wu G, Zhang F, Du Q (2017) Hyperspectral image classification using deep pixel-pair features. IEEE Trans Geosci Remote Sens 55(2):844–853
Li Y, Zhang H, Shen Q (2017) Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens 9(1):67
Liang H, Li Q (2016) Hyperspectral imagery classification using sparse representations of convolutional neural network features. Remote Sens 8 (2):99
Lin Z, Chen Y, Zhao X, Wang G (2013) Spectral-spatial classification of hyperspectral image using autoencoders. In: 2013 9th international conference on information, communications & signal processing, IEEE, pp 1–5
Mahmood Z, Thoonen G, Scheunders P (2012) Automatic threshold selection for morphological attribute profiles. In: Geoscience and remote sensing symposium (IGARSS), 2012 IEEE international, IEEE, pp 4946–4949
Makantasis K, Karantzalos K, Doulamis A, Doulamis N (2015) Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: Geoscience and remote sensing symposium (IGARSS), 2015 IEEE international, IEEE, pp 4959–4962
Mario Haut J, E Paoletti M, Plaza J, Li J, Plaza A (2018) Active learning with convolutional neural networks for hyperspectral image classification using a new bayesian approach. IEEE Trans Geosci Remote Sens 56(11):6440–6461
Marpu PR, Pedergnana M, Dalla Mura M, Benediktsson JA, Bruzzone L (2013) Automatic generation of standard deviation attribute profiles for spectral–spatial classification of remote sensing data. IEEE Geosci Remote Sens Lett 10 (2):293–297
Paoletti M, Haut J, Plaza J, Plaza A (2018) A new deep convolutional neural network for fast hyperspectral image classification. ISPRS J Photogramm Remote Sens 145:120–147
Pedergnana M, Reddy Marpu P, Dalla Mura M, Benediktsson JA, Bruzzone L (2013) A novel technique for optimal feature selection in attribute profiles based on genetic algorithms. IEEE Trans Geosci Remote Sens 51(6):3514–3528
Salembier P, Oliveras A, Garrido L (1998) Antiextensive connected operators for image and sequence processing. IEEE Trans Image Process 7(4):555–570
Singhal V, Aggarwal HK, Tariyal S, Majumdar A (2017) Discriminative robust deep dictionary learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 55(9):5274–5283
Xing C, Ma L, Yang X (2016) Stacked denoise autoencoder based feature extraction and classification for hyperspectral images. Journal of Sensors 2016:1–10. Article ID 3632943
Yang X, Ye Y, Li X, Lau RY, Zhang X, Huang X (2018) Hyperspectral image classification with deep learning models. IEEE Trans Geosci Remote Sens 56(9):5408–5423
Yue J, Zhao W, Mao S, Liu H (2015) Spectral–spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sens Lett 6(6):468–477
Zabalza J, Ren J, Zheng J, Zhao H, Qing C, Yang Z, Du P, Marshall S (2016) Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 185:1–10
Zhang L, Zhang L, Du B (2016) Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine 4(2):22–40
Zhang X, Pan Z, Lu X, Hu B, Zheng X (2018) Hyperspectral image classification based on joint spectrum of spatial space and spectral space. Multimedia Tools and Applications 77(22):29759–29777
Zhao W, Du S (2016) Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans Geosci Remote Sens 54(8):4544–4554
Zhao W, Guo Z, Yue J, Zhang X, Luo L (2015) On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery. Int J Remote Sens 36(13):3368–3379
Zhong P, Gong Z, Li S, Schönlieb C B (2017) Learning to diversify deep belief networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 55(6):3516–3530
Zhu L, Chen Y, Ghamisi P, Benediktsson JA (2018) Generative adversarial networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 56(9):5046–5063
Acknowledgments
This work was supported in part by the RPS-NER Research Grant from the All India Council for Technical Education, New Delhi, India. Authors would like to thank Dr. S. Prasad for providing University of Houston data set and Dr. P. Ghamisi for providing standard training and test sets of the data sets used in the experiments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Das, A., Bhardwaj, K. & Patra, S. Deep convolution neural network with automatic attribute profiles for hyperspectral image classification. Multimed Tools Appl 80, 35365–35385 (2021). https://doi.org/10.1007/s11042-020-10169-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-020-10169-0