Skip to main content
Log in

Diabetic retinopathy detection and stage classification in eye fundus images using active deep learning

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Retinal fundus image analysis (RFIA) for diabetic retinopathy (DR) screening can be used to reduce the risk of blindness among diabetic patients. The RFIA screening programs help the ophthalmologists to cope with this paramount visual impairment problem. In this article, an automatic recognition of the DR stage is proposed based on a new multi-layer architecture of active deep learning (ADL). To develop the ADL system, we used the convolutional neural networks (CNN) model to automatically extract features compare to handcrafted-based features. However, the training of CNN procedure requires an immense size of labeled data that makes it almost difficult in the classification phase. As a result, a label-efficient CNN architecture is presented known as ADL-CNN by using one of the active learning methods known as an expected gradient length (EGL). This ADL-CNN model can be seen as a two-stage process. At first, the proposed ADL-CNN system selects both the most informative patches and images by using some ground truth labels of training samples to learn the simple to complex retinal features. Next, it provides useful masks for prognostication to assist clinical specialists for the important eye sample annotation and segment regions-of-interest within the retinograph image to grade five severity-levels of diabetic retinopathy. To test and evaluate the performance of ADL-CNN model, the EyePACS benchmark is utilized and compared with state-of-the-art methods. The statistical metrics are used such as sensitivity (SE), specificity (SP), F-measure and classification accuracy (ACC) to measure the effectiveness of ADL-CNN system. On 54,000 retinograph images, the ADL-CNN model achieved an average SE of 92.20%, SP of 95.10%, F-measure of 93% and ACC of 98%. Hence, the new ADL-CNN architecture is outperformed for detecting DR-related lesions and recognizing the five levels of severity of DR on a wide range of fundus images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abbas Q, Fondon I, Sarmiento A, Jiménez S, Alemany P (2017) Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features. Med Biol Eng Comput 55(11):1959–1974. https://doi.org/10.1007/s11517-017-1638-6

    Article  Google Scholar 

  2. Abbas Q, Ibrahim MEA, Jaffar MA (2018) Video scene analysis: an overview and challenges on deep learning algorithms. Multimed Tools Appl 77(16):20415–20453. https://doi.org/10.1007/s11042-017-5438-7

    Article  Google Scholar 

  3. Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, Niemeijer M (2016) Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci 57(13):5200–5206. https://doi.org/10.1167/iovs.16-19964

    Article  Google Scholar 

  4. Acharya R, Chua CK, Ng EYK, Yu W, Chee C (2008) Application of higher order spectra for the identification of diabetes retinopathy stages. J Med Syst 32(6):481–488. https://doi.org/10.1007/s10916-008-9154-8

    Article  Google Scholar 

  5. Acharya UR, Lim CM, Ng EYK, Chee C, Tamura T (2009) Computer-based detection of diabetes retinopathy stages using digital fundus images. Proceedings of the institution of mechanical engineers, part H: J Eng Med 223, no. 5 : 545–553. https://doi.org/10.1243/09544119jeim486

  6. Adarsh P, Jeyakumari D (2013) Multiclass SVM-based automated diagnosis of diabetic retinopathy. In 2013 International Conference on Communication and Signal Processing, pp. 206–210. IEEE. https://doi.org/10.1109/iccsp.2013.6577044

  7. Akilesh B, Marwah T, Balasubramanian VN, Rajamani K (2017) On the relevance of very deep networks for diabetic retinopathy diagnostics. In Applications of Cognitive Computing Systems and IBM Watson, pp. 47–54. Springer, Singapore. https://doi.org/10.1007/978-981-10-6418-0_6

    Book  Google Scholar 

  8. Alban M, Gilligan T (2016) Automated detection of diabetic retinopathy using fluorescein angiography photographs. Rep Standford Educ

  9. Arunkumar R, Karthigaikumar P (2017) Multi-retinal disease classification by reduced deep learning features. Neural Comput & Applic 28(2):329–334. https://doi.org/10.1007/s00521-015-2059-9

    Article  Google Scholar 

  10. Bello-Cerezo R, Bianconi F, Di Maria F, Napoletano P, Smeraldi F (2019) Comparative Evaluation of Handcrafted Image Descriptors vs Off-the-Shelf CNN-Based Features for Colour Texture Classification under Ideal and Realistic Conditions. Appl Sci 9(4):738. https://doi.org/10.3390/app9040738

    Article  Google Scholar 

  11. Bhaskaranand M, Ramachandra C, Bhat S, Cuadros J, Nittala MG, Sadda SV, Solanki K (2016) Automated diabetic retinopathy screening and monitoring using retinal fundus image analysis. J Diabetes Sci Technol 10(2):254–261. https://doi.org/10.1177/1932296816628546

    Article  Google Scholar 

  12. Chandrakumar T, Kathirvel R (2016) Classifying diabetic retinopathy using deep learning architecture. Int J Eng Res Technol 5(6):19–24. https://doi.org/10.17577/ijertv5is060055

    Article  Google Scholar 

  13. Choi JY, Yoo TK, Seo JG, Kwak J, Um TT, Rim TH (2017) Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database. PloS one 12(11):e0187336. https://doi.org/10.1371/journal.pone.0187336

    Article  Google Scholar 

  14. Christine N (2015) Your diabetic patients: look them in the eyes. Which ones will lose their sight?. https://www.eyepacs.com/diabeticretinopathy/

  15. Chudzik P, Majumdar S, Calivá F, Al-Diri B, Hunter A (2018) Microaneurysm detection using fully convolutional neural networks. Comput Methods Prog Biomed 158:185–192. https://doi.org/10.1016/j.cmpb.2018.02.016

    Article  Google Scholar 

  16. Colas E, Besse A, Orgogozo A, Schmauch B, Meric N, Besse E (2016) Deep learning approach for diabetic retinopathy screening. Acta Ophthalmol 94. https://doi.org/10.1111/j.1755-3768.2016.0635

  17. Costa P, Campilho A (2017) Convolutional bag of words for diabetic retinopathy detection from eye fundus images. IPSJ Trans Comput Vis Appl 9(1):10. https://doi.org/10.1186/s41074-017-0023-6

    Article  Google Scholar 

  18. Dai L, Fang R, Li H, Hou X, Sheng B, Wu Q, Jia W (2018) Clinical report guided retinal microaneurysm detection with multi-sieving deep learning. IEEE Trans Med Imaging 37(5):1149–1161. https://doi.org/10.1109/tmi.2018.2794988

    Article  Google Scholar 

  19. Decencière E, Cazuguel G, Zhang X, Thibault G, Klein JC, Meyer F, Marcotegui B, Quellec G, Lamard M, Danno R et al (2013) Teleophta: machine learning and image processing methods for teleophthalmology. IRBM 34(2):196–203. https://doi.org/10.1016/j.irbm.2013.01.010

    Article  Google Scholar 

  20. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee. https://doi.org/10.1109/cvprw.2009.5206848

  21. Freytag A, Rodner E, Denzler J (2014) Selecting influential examples: Active learning with expected model output changes. In European Conference on Computer Vision, pp. 562–577. Springer, Cham. https://doi.org/10.1007/978-3-319-10593-2_37

    Book  Google Scholar 

  22. Galveia JN, Travassos A, Quadros FA, da Silva Cruz LA (2018) Computer aided diagnosis in ophthalmology: Deep learning applications. In Classification in BioApps, pp. 263–293. Springer, Cham. https://doi.org/10.1007/978-3-319-65981-7_10

    Book  Google Scholar 

  23. García G, Gallardo J, Mauricio A, López J, Del Carpio C (2017) Detection of diabetic retinopathy based on a convolutional neural network using retinal fundus images. In International Conference on Artificial Neural Networks, pp. 635–642. Springer, Cham. https://doi.org/10.1007/978-3-319-68612-7_72

    Book  Google Scholar 

  24. Gardner GG, Keating D, Williamson TH, Elliott AT (1996) Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Br J Ophthalmol 80(11):940–944. https://doi.org/10.1136/bjo.80.11.940

    Article  Google Scholar 

  25. Gargeya R, Leng T (2017) Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7):962–969. https://doi.org/10.1016/j.ophtha.2017.02.008

    Article  Google Scholar 

  26. Gondal WM, Köhler JM, Grzeszick R, Fink GA, Hirsch M (2017) Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images. In 2017 IEEE International Conference on Image Processing (ICIP), pp. 2069-2073. IEEE. https://doi.org/10.1109/icip.2017.8296646

  27. Greenspan H, Van Ginneken B, Ronald M (2016) Summers Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35(5):1153–1159. https://doi.org/10.1109/tmi.2016.2553401

    Article  Google Scholar 

  28. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T et al (2018) Recent advances in convolutional neural networks. Pattern Recogn 77:354–377. https://doi.org/10.1016/j.patcog.2017.10.013

    Article  Google Scholar 

  29. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410. https://doi.org/10.1001/jama.2016.17216

    Article  Google Scholar 

  30. Guo S, Li T, Kang H, Li N, Zhang Y, Wang K (2019) L-Seg: An end-to-end unified framework for multi-lesion segmentation of fundus images. Neurocomput 349:52–63. https://doi.org/10.1016/j.neucom.2019.04.019

    Article  Google Scholar 

  31. Guo Y, Yu L, Oerlemans A, Lao S, Wu S, Michael S (2016) Lew Deep learning for visual understanding: A review. Neurocomput 187:27–48. https://doi.org/10.1016/j.neucom.2015.09.116

    Article  Google Scholar 

  32. Haloi M (2015) Improved microaneurysm detection using deep neural networks. arXiv preprint arXiv:1505.04424

  33. Haneda S, Yamashita H (2010) International clinical diabetic retinopathy disease severity scale. Nihon rinsho Jpn J Clin Med 68:228

    Google Scholar 

  34. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision, pp. 1026–1034. https://doi.org/10.1109/iccv.2015.123

  35. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778. https://doi.org/10.1109/CVPR.2016.90

  36. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132–7141. https://doi.org/10.1109/CVPR.2018.00745

  37. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708. https://doi.org/10.1109/CVPR.2017.243

  38. Ishtiaq U, Kareem SA, Abdullah ERMF, Mujtaba G, Jahangir R, Ghafoor HY (2019) Diabetic retinopathy detection through artificial intelligent techniques: a review and open issues. Multimed Tools Appl 79:1–44. https://doi.org/10.1007/s11042-018-7044-8

    Article  Google Scholar 

  39. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia, pp. 675–678. ACM. https://doi.org/10.1145/2647868.2654889

  40. Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, McKeown A et al (2018) Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5):1122–1131. https://doi.org/10.1016/j.cell.2018.02.010

    Article  Google Scholar 

  41. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097–1105. https://doi.org/10.1145/3065386

  42. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324. https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  43. Li T, Gao Y, Wang K, Guo S, Liu H, Kang H (2019) Diagnostic Assessment of Deep Learning Algorithms for Diabetic Retinopathy Screening. Inf Sci. https://doi.org/10.1016/j.ins.2019.06.011

  44. Li K, He F, Yu H, Chen X (2019) A parallel and robust object tracking approach synthesizing adaptive Bayesian learning and improved incremental subspace learning. Front Comp Sci 13(5):1116–1135. https://doi.org/10.1007/s11704-018-6442-4

    Article  Google Scholar 

  45. Li B, Helen KL (2013) Automated analysis of diabetic retinopathy images: principles, recent developments, and emerging trends. Curr Diab Rep 13(4):453–459. https://doi.org/10.1007/s11892-013-0393-9

    Article  MathSciNet  Google Scholar 

  46. Li Z, Keel S, Liu C, He Y, Meng W, Scheetz J, Lee PY et al (2018) An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs. Diab care 41(12):2509–2516. https://doi.org/10.2337/dc18-0147

    Article  Google Scholar 

  47. Lin J, Yu L, Weng Q, Zheng X (2019) Retinal image quality assessment for diabetic retinopathy screening: a survey. Multimed Tools Appl 79:1–27. https://doi.org/10.1007/s11042-019-07751-6

    Article  Google Scholar 

  48. Liu L, Chen J, Fieguth P, Zhao G, Chellappa R, Pietikäinen M (2019) From BoW to CNN: two decades of texture representation for texture classification. Int J Comput Vis 127(1):74–109. https://doi.org/10.1007/s11263-018-1125-z

    Article  Google Scholar 

  49. Mansour RF (2018) Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy. Biomed Eng Lett 8(1):41–57. https://doi.org/10.1007/s13534-017-0047-y

    Article  Google Scholar 

  50. Mookiah MRK, Acharya UR, Chua CK, Lim CM, Ng EYK, Laude A (2013) Computer-aided diagnosis of diabetic retinopathy: A review. Comput Biol Med 43(12):2136–2155. https://doi.org/10.1016/j.compbiomed.2013.10.007

    Article  Google Scholar 

  51. Nanni L, Ghidoni S, Brahnam S (2018) Ensemble of convolutional neural networks for bioimage classification. App Comput Inf. https://doi.org/10.1016/j.aci.2018.06.002

  52. Napoletano P (2017) Handcrafted vs learned descriptors for color texture classification. In International Workshop on Computational Color Imaging, pp. 259–271. Springer, Cham. https://doi.org/10.1007/978-3-319-56010-6_22

    Book  Google Scholar 

  53. Nayak J, Bhat PS, Acharya R, Lim CM, Kagathi M (2008) Automated identification of diabetic retinopathy stages using digital fundus images. J Med Syst 32(2):107–115. https://doi.org/10.1007/s10916-007-9113-9

    Article  Google Scholar 

  54. Orlando JI, Prokofyeva E, del Fresno M, Blaschko MB (2018) An ensemble deep learning based approach for red lesion detection in fundus images. Comput Methods Prog Biomed 153:115–127. https://doi.org/10.1016/j.cmpb.2017.10.017

    Article  Google Scholar 

  55. Otálora S, Perdomo O, González F, Müller H (2017) Training deep convolutional neural networks with active learning for exudate classification in eye fundus images. In Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, pp. 146–154. Springer, Cham. https://doi.org/10.1007/978-3-319-67534-3_16

    Book  Google Scholar 

  56. Pan Y, He F, Haiping Y (2020) Learning social representations with deep autoencoder for recommender system. World Wide Web 23:1–21. https://doi.org/10.1007/s11280-020-00793-z

    Article  Google Scholar 

  57. Pang H, Luo C, Wang C (2018) Improvement of the application of diabetic retinopathy detection model. Wirel Pers Commun 103(1):611–624. https://doi.org/10.1007/s11277-018-5465-3

    Article  Google Scholar 

  58. Perdomo O, Otalora S, Rodríguez F, Arevalo J, González FA (2016) A Novel Machine Learning Model Based on Exudate Localization to Detect Diabetic Macular Edema. In: Chen X, Garvin MK, Liu J, Trucco E, Xu Y editors. Proceedings of the Ophthalmic Medical Image Analysis Third International Workshop, OMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21. 137–144. https://doi.org/10.17077/omia.1057

  59. Pratt H, Coenen F, Broadbent DM, Harding SP, Zheng Y (2016) Convolutional neural networks for diabetic retinopathy. International Conference on Medical Imaging Understanding and Analysis, 6-8 July, Loughborough, UK. Procedia Comput Sci 90:200–205. https://doi.org/10.1016/j.procs.2016.07.014

  60. Prentašić P, Lončarić S (2015) Detection of exudates in fundus photographs using convolutional neural networks. In 2015 9th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 188–192. IEEE. https://doi.org/10.1109/ispa.2015.7306056

  61. Quellec G, Charrière K, Boudi Y, Cochener B, Lamard M (2017) Deep image mining for diabetic retinopathy screening. Med Image Anal 39:178–193. https://doi.org/10.1016/j.media.2017.04.012

    Article  Google Scholar 

  62. Qureshi I (2015) Glaucoma detection in retinal images using image processing techniques: a survey. Int J Adv Netw Appl 7(2):2705

    Google Scholar 

  63. Qureshi I, Khan MA, Sharif M, Saba T, Ma J (2020) Detection of glaucoma based on cup-to-disc ratio using fundus images. Int J Intell Syst Technol Appl 19(1):1–16. https://doi.org/10.1504/IJISTA.2020.105172

    Article  Google Scholar 

  64. Qureshi I, Ma J, Abbas Q (2019) Recent development on detection methods for the diagnosis of diabetic retinopathy. Symmetry 11(6):749. https://doi.org/10.3390/sym11060749

    Article  Google Scholar 

  65. Qureshi I, Ma J, Shaheed K (2019) A hybrid proposed fundus image enhancement framework for diabetic retinopathy. Algorithms 12(1):1–14. https://doi.org/10.3390/a12010014

  66. Qureshi I, Sharif M, Yasmin M, Raza M, Javed MY (2016) Computer aided systems for diabetic retinopathy detection using digital fundus images: A survey. Curr Med Imaging Rev 12(4):234–241. https://doi.org/10.2174/1573405611666150929234644

    Article  Google Scholar 

  67. Rahim SS, Palade V, Shuttleworth J, Jayne C (2016) Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing. Brain Inform 3(4):249–267. https://doi.org/10.1007/s40708-016-0045-3

    Article  Google Scholar 

  68. Raju M, Pagidimarri V, Barreto R, Kadam A, Kasivajjala V, Aswath A (2017) Development of a Deep Learning Algorithm for Automatic Diagnosis of Diabetic Retinopathy. In MedInfo, pp. 559–563. doi:https://doi.org/10.3233/978-1-61499-830-3-559

  69. Sadek I, Elawady M, Shabayek AER (2017) Automatic classification of bright retinal lesions via deep network features. arXiv preprint arXiv:1707.02022

  70. Saha SK, Fernando B, Cuadros J, Xiao D, Kanagasingam Y (2018) Automated quality assessment of colour fundus images for diabetic retinopathy screening in telemedicine. J Digit Imaging 31(6):869–878. https://doi.org/10.1007/s10278-018-0084-9

    Article  Google Scholar 

  71. Sánchez CI, Niemeijer M, Abràmoff MD, van Ginneken B (2010) Active learning for an efficient training strategy of computer-aided diagnosis systems: application to diabetic retinopathy screening. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 603–610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15711-0_75

    Book  Google Scholar 

  72. Sankar M, Batri K, Parvathi R (2016) Earliest diabetic retinopathy classification using deep convolution neural networks. Int J Adv Eng Technol

  73. Settle B Active learning. Synthesis lectures on artificial intelligence and machine learning 6 (2012): pp. 1–114. https://doi.org/10.2200/s00429ed1v01y201207aim018

  74. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  75. Tan JH, Fujita H, Sivaprasad S, Bhandary SV, Rao AK, Chua KC, Acharya UR (2017) Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Inf Sci 420:66–76. https://doi.org/10.1016/j.ins.2017.08.050

    Article  Google Scholar 

  76. Ting DSW, Cheung CY-L, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H et al (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318(22):2211–2223. https://doi.org/10.1001/jama.2017.18152

    Article  Google Scholar 

  77. Ting DSW, Cheung GCM, Wong TY (2016) Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol 44(4):260–277. https://doi.org/10.1111/ceo.12696

    Article  Google Scholar 

  78. Wang Z, Yang J (2017) Diabetic retinopathy detection via deep convolutional networks for discriminative localization and visual explanation. arXiv preprint: http://arXiv.org/abs/1703.10757

  79. Wang Z, Yin Y, Shi J, Fang W, Li H, Wang X (2017) Zoom-in-net: Deep mining lesions for diabetic retinopathy detection. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 267–275. Springer, Cham. https://doi.org/10.1007/978-3-319-66179-7_31

    Book  Google Scholar 

  80. Washington RE, Orchard TJ, Arena VC, LaPorte RE, Secrest AM, Tull ES (2014) All-cause mortality in a population-based type 1 diabetes cohort in the US Virgin Islands. Diabetes Res Clin Pract 103(3):504–509. https://doi.org/10.1016/j.diabres.2013.12.014

    Article  Google Scholar 

  81. Wu Y, He F, Zhang D, Li X (2015) Service-oriented feature-based data exchange for cloud-based design and manufacturing. IEEE Trans Serv Comput 11(2):341–353. https://doi.org/10.1109/TSC.2015.2501981

    Article  Google Scholar 

  82. Xu K, Feng D, Mi H (2017) Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules 22(12):2054. https://doi.org/10.3390/molecules22122054

    Article  Google Scholar 

  83. Yang Y, Li T, Li W, Wu H, Fan W, Zhang W (2017) Lesion detection and grading of diabetic retinopathy via two-stages deep convolutional neural networks. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 533–540. Springer, Cham. https://doi.org/10.1007/978-3-319-66179-7_61

    Book  Google Scholar 

  84. Yu F, Seff A, Zhang Y, Song S, Funkhouser T, Xiao J (2015) Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365

  85. Zhang J, He F, Chen Y (2020) A new haze removal approach for sky/river alike scenes based on external and internal clues. Multimed Tools Appl 79(3):2085–2107. https://doi.org/10.1007/s11042-019-08399-y

    Article  Google Scholar 

  86. Zhang W, Zhong J, Yang S, Gao Z, Hu J, Chen Y, Yi Z (2019) Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowl-Based Syst 175:12–25. https://doi.org/10.1016/j.knosys.2019.03.016

    Article  Google Scholar 

  87. Zhou S, Chen Q, Wang X (2014) Active semi-supervised learning method with hybrid deep belief networks. PLoS One 9(9):e107122. https://doi.org/10.1371/journal.pone.0107122

    Article  Google Scholar 

  88. Zhou L, Yu Z, Yang J, Yu Q, Xun X (2017) Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images. IET Image Process 12(4):563–571. https://doi.org/10.1049/iet-ipr.2017.0636

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank all the anonymous reviewers for their valuable comments. This work is supported by the National Natural Science Foundation of China (NNSFC) under the grant no: (61672322, 61672324) and is a part of a Ph.D. research project conducted in the intelligent and media research center (iLEARN), School of Computer Science and Technology, Shandong University, Qingdao, China.

Funding

This work is supported by the National Natural Science Foundation of China (NNSFC) under grant no: (61672322, 61672324).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Ethics declarations

Conflict of interest

The authors disclosed no potential conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qureshi, I., Ma, J. & Abbas, Q. Diabetic retinopathy detection and stage classification in eye fundus images using active deep learning. Multimed Tools Appl 80, 11691–11721 (2021). https://doi.org/10.1007/s11042-020-10238-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10238-4

Keywords

Navigation