Skip to main content

Advertisement

Log in

A novel audio encryption approach via finite-time synchronization of fractional order hyperchaotic system

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Synchronization of 4-D nonlinear fractional order hyperchaotic system with external disturbance is important models for encryption and decryption technique. In this paper, the fractional order 0 < α ≤ 1 is consider to establish finite-time control for synchronization of sender and receiver system. An audio encryption and decryption algorithms are investigated based on converting an audio data samples into image data. A random mask generated from chaotic mask is used to encrypt and decrypt the audio signals. The path of error system of fractional order hyperchaotic system is shown to be highly better than the classical one. Further, high level security of the proposed work is entrusted or assured by analyzing various metrics including MSE, PSNR, SSIM, NPCR and SNR along with numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Abdurahman A, Jiang H, Teng Z (2016) Finite-time synchronization for fuzzy cellular neural networks with time-varying delays. Fuzzy Sets Syst 297:96–111

    Article  MathSciNet  MATH  Google Scholar 

  2. Aghababa MP, Khanmohammadi S, Alizadeh G (2011) Finite-time synchronization of two different chaotic syatems with unknown parameters via sliding mode technique. Appl Math Model 35:3080–3091

    Article  MathSciNet  MATH  Google Scholar 

  3. Al-Kateeb ZN, Mohammed SJ (2020) A novel approach for audio file encryption using hand geometry. Multimed Tools Appl 79:19615–19628

    Article  Google Scholar 

  4. Cafagna D, Grassi G (2011) New 3D-scroll attractors in hyperchaotic Chua’s circuits forming a ring. Int J Bifurcation Choas Appl Sci Eng 13:2889–2903

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen H (2009) Chaos control and global synchronization of Liu chaotic systems using balanced feedback control. Chaos Soliton Fract 40:466–473

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifurc Chaos Appl Sci Eng 9:1465–1466

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen A, Lu J, Lü J, Yu S (2006) Generating hyperchaotic Lü attractor via state feedback control. Physica A 364:103–110

    Article  Google Scholar 

  8. Cheng J, Park JH, Karimi H, Shen H (2018) A flexible terminal approach to sampled-data exponentially synchronization of Markovian neural networks with time-varying delayed signals. IEEE Trans Cybern 48:2232–2244

    Article  Google Scholar 

  9. Cuomo KM, Oppenheim AM, Strogatz SM (1993) Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans Circuits Syst II Analog Digit Signal Process 40:626–633

    Article  Google Scholar 

  10. Dadras S, Momeni HR, Qi G, Wang ZL (2012) Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form. Nonlinear Dyn 67:1161–1173

    Article  MathSciNet  MATH  Google Scholar 

  11. Fa-Qiang W, Chong-Xin L (2006) Hyperchaos evolved from the Liu chaotic system. Chin Phys 15:963–968

    Article  Google Scholar 

  12. Feng M, Wang X, Wei Q (2013) Adaptive robust synchronization of fractional-order chaotic system with disturbance. J Vib Control 21:2259–2265

    Article  MathSciNet  Google Scholar 

  13. Gao T, Chen Z, Yuan Z, Chen G (2006) A hyperchaos generated from Chen’s system. Int J Mod Phys C 17:471–478

    Article  MATH  Google Scholar 

  14. Jackson LB, Lindgren AG, Kim Y (1984) A chaotic attractor from Chua’s circuit. IEEE Trans Circuits Syst 31:1055–1058

    Article  MathSciNet  Google Scholar 

  15. Jawahir A, Haviluddin H (2015) An audio encryption using transposition method. Int J Adv Intell Inform 1:98–106

    Article  Google Scholar 

  16. Jia Q (2007) Hyperchaos generated from the Lorenz chaotic system and its control. Phys Lett A 366:217–222

    Article  MATH  Google Scholar 

  17. Kalpana M, Ratnavelu K, Balasubramaniam P, Kamali MZM (2018) Synchronization of chaotic-type delayed neural networks and its application. Nonlinear Dyn 93:543–555

    Article  MATH  Google Scholar 

  18. Kalpana M, Ratnavelu K, Balasubramaniam P (2019) An audio encryption based on synchronization of robust BAM FCNNs with time delays. Multimed Tools Appli 78:5969–5988

    Article  Google Scholar 

  19. Kwon OM, Park JH, Lee SM (2011) Secure communication based on chaotic synchronization via interval time-varying delay feedback control. Nonlinear Dyn 63:239–252

    Article  MathSciNet  MATH  Google Scholar 

  20. Lassoued A, Boubaker O (2016) On new chaotic and hyperchaotic systems: a literature survey. Nonlinear Anal Model 21:770–789

    Article  MathSciNet  MATH  Google Scholar 

  21. Li X, Ou Q (2011) Dynamical properties and simulation of a new Lorenz-like chaotic system. Nonlinear Dyn 65:255–270

    Article  MathSciNet  MATH  Google Scholar 

  22. Lima JB, Da Silva Neto EF (2016) Audio encryption based on the cosine number transform. Multimed Tools Appl 75:8403–8418

    Article  Google Scholar 

  23. Lin T, Huang F, Du Z, Lin Y (2015) Synchronization of fuzzy modeling chaotic time delay memristor-based Chua’s circuits with application to secure communication. Int J Fuzzy Syst 17:206–214

    Article  MathSciNet  Google Scholar 

  24. Liu H, Kadir A, Li Y (2016) Audio encryption scheme by confusion and diffusion based on multi-scroll chaotic system and one-time keys. Opt-Int J Light Electron Opt 127:7431–7438

    Article  Google Scholar 

  25. Muthukumar P, Balasubramaniam P, Ratnavelu K (2018) Sliding mode control for generalized robust synchronization of mismatched fractional order dynamical system and its application to secure transmission of voice messages. ISA Trans 82:51–61

    Article  Google Scholar 

  26. Nadir J, Ein AA, Alqadi Z (2016) A technique to encrypt-decrypt stereo wave file. Int J Comput Inf Technol 5:465–470

    Google Scholar 

  27. Naskar PK, Paul S, Nandy D, Chaudhuri A (2019) DNA encoding and channel shuffling for secured encryption of audio data. Multimed Tools Appl 78:25019–25042

    Article  Google Scholar 

  28. Pang S, Liu Y (2011) A new hyperchaotic system from the Lü system and its control. J Comput Appl Math 235:2775–2789

    Article  MathSciNet  MATH  Google Scholar 

  29. Pang S, Feng Y, Liu Y (2016) Finite-time synchronization of chaotic systems with different dimension and secure communication. Math Probl Eng 2016:1–14

    MathSciNet  MATH  Google Scholar 

  30. Prabu AV, Srinivasarao S, Apparao T, Rao MJ, Rao KB (2012) Audio encryption in handsets. Int J Comput Appl 40:40–45

    Google Scholar 

  31. Podlubny I (1999) Fractional differential equation. In: Mathematics in science and engineering, vol 198

  32. Shen H, Zhu Y, Zhang L, Park J (2017) Extended dissipative state estimation for Markov jump neural networks with unreliable links. IEEE Trans Neural Netw Learn Syst 28:346–358

    Article  MathSciNet  Google Scholar 

  33. Srivastava M, Ansari SP, Agrawal SK, Das S, Leung AYT (2014) Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method. Nonlinear Dyn 76:905–914

    Article  MathSciNet  Google Scholar 

  34. Sun J, Wang Y, Wang Y, Shen Y (2016) Finite-time synchronization between two complex-variable chaotic systems with unknown parameters via nonsingular terminal sliding mode control. Nonlinear Dyn 85:1105–1117

    Article  MathSciNet  MATH  Google Scholar 

  35. Wan Z, Wang C, Luo X, Lin Y, Huang T (2014) Generating variable number of wings from a novel four-dimensional hyperchaotic system with one equilibrium. Optik 125:1371–1376

    Article  Google Scholar 

  36. Wang X, Zhang Y, Gao Y (2009) Hyperchaos generated from Qi system and its observer. Mod Phys Lett B 23:963–974

    Article  MATH  Google Scholar 

  37. Wang L, Shen Y, Yin Q, Zhang G (2015) Adaptive synchronization of memristor-based neural networks with time-varying delays. IEEE Trans Neural Netw Learn Syst 26:2033–2042

    Article  MathSciNet  Google Scholar 

  38. Wang L, Shen Y, Zhang G (2017) Finite-time stabilization and adaptive control of memristor-based delayed neural networks. IEEE Trans Neural Netw Learn Syst 28:2648–2659

    Article  MathSciNet  Google Scholar 

  39. Wang L, Ge MF, Zeng Z, Hu J (2018) Finite-time robust consensus of nonlinear distributed multiagent systems via two-layer event-triggered control. Inf Sci 466:270–283

    Article  MATH  Google Scholar 

  40. Wang L, Dong T, Ge M-F (2019) Finite-time synchronization of memristor chaotic systems and its application in image encryption. Appl Math Comput 347:293–305

    MATH  Google Scholar 

  41. Wem S, Zhang Z, Huang T, Chen Y (2013) Fuzzy modeling and synchronization of different memristor-based chaotic circuits. Phys Lett A 377:2016–2021

    Article  MathSciNet  MATH  Google Scholar 

  42. Wen S, Zhang Z, Huang T (2012) Adaptive synchronization of memristor-based Chua’s circuit. Phys Lett A 376:2775–2780

    Article  MATH  Google Scholar 

  43. Xiaodong L, Haoyang Y, Hongyu Z, Xin J, Hongbo S, Jing L (2020) Video encryption based on hyperchaotic system. Multimed Tools Appl 79:23995–24011

    Article  Google Scholar 

  44. Yang N, Liu C (2013) A novel fractional-order hyperchaotic system stabilization via fractional sliding-mode control. Nonlinear Dyn 74:721–732

    Article  MathSciNet  MATH  Google Scholar 

  45. Yin C, Zhong SM, Chen WF (2012) Design of sliding mode controller for a class of fractional-order chaotic systems. Commun Nonlinear Sci Numer Simul 17:356–366

    Article  MathSciNet  MATH  Google Scholar 

  46. Yujun N, Xingyuan W, Mingjun W (2010) A new hyperchaotic system and its circuit implementation. Commun Nonlinear Sci Numer Simul 15:3518–3524

    Article  Google Scholar 

  47. Zhang G, Liu Z, Ma Z (2007) Generalized synchronization of different dimensional chaotic dynamical systems. Chaos Solitons Fractals 32:773–779

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhen W, Xia H, Yu-Xia L, Xiao-Na S (2013) A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system. Chin Phys B 22:1–7

    Google Scholar 

  49. Zou L, Peng Y, Feng Y, Tu Z (2010) Stabilization and synchronization of memristive chaotic circuits by impulsive control. Complexity 2017:1–10

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is partially supported by University Grants Commission-Special Assistance Programme (Department of Special Assistance-I), New Delhi, India, File No. F. 510/7/DSA-1/2015 (SAP-I) and partially supported by NFSC, UGC, New Delhi, File No. 82-1/2018 (SA-III), UGC-Ref. No.: 4071/(CSIR-UGC NET JUNE 2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Balasubramaniam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, N.R., Kalpana, M. & Balasubramaniam, P. A novel audio encryption approach via finite-time synchronization of fractional order hyperchaotic system. Multimed Tools Appl 80, 18043–18067 (2021). https://doi.org/10.1007/s11042-020-10288-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10288-8

Keywords