Skip to main content
Log in

Directional local ternary co-occurrence pattern for natural image retrieval

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Content based image retrieval (CBIR) systems provide a faster way to retrieve images by representing them in terms of their visual contents. In this paper, a novel texture feature, directional local ternary co-occurrence pattern (DLTCoP) is proposed for CBIR. First and second order derivatives of the image are extracted through directional filter masks to capture coarse and fine details of the image in four directions. Thereafter, changes in first and second order filter responses are analyzed simultaneously and co-occurrence is computed based on their inter-relations. The information captured by DLTCoP is further enriched by computing histograms for the gray-scale image and the color information is represented as color histograms. The proposed scheme provides a consolidated feature capable of distinguishing between different images. Experiments are conducted on five benchmark data sets, Corel 1000, Corel 5k, Corel 10k, INRIA Holidays and Salsburg Texture. Significant improvement in average precision and recall is obtained with respect to the existing state-of-the-art features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Agarwal M, Maheshwari RP (2011) Weight co-occurrence based integrated color and intensity matrix for cbir. TECHNIA – Int J Comput Sci Commun Technol 4(1):651–656

    Google Scholar 

  2. Agarwal M, Singhal A (2018) Haar-like local ternary pattern for image retrieval. In: Proceedings of international conference on industrial and information system, pp 1–5

  3. Agarwal M, Singhal A (2019) Multi-channel local ternary pattern for content-based image retrieval. Pattern Anal Appl 22(4):1585–1596

    Article  MathSciNet  Google Scholar 

  4. Agarwal M, Singhal A, Lall B (2018) 3D local ternary co-occurrence patterns for natural, texture, face and bio medical image retrieval. Neurocomputing 313:333–345

    Article  Google Scholar 

  5. Ani Brown Mary N, Dharma D (2018) Coral reef image/video classification employing novel octa-angled pattern for triangular sub region and pulse coupled convolutional neural network (PCCNN). Multimed Tools Appl 77:31545–31579

    Article  Google Scholar 

  6. Ani Brown Mary N, Dharma D (2019) A novel framework for real-time diseased coral reef image classification. Multimed Tools Appl 78:11387–11425

    Article  Google Scholar 

  7. Banerjee P, Bhunia AK, Bhattacharyya A, Roy PP, Murala S (2018) Local neighborhood intensity pattern—a new texture feature descriptor for image retrieval. Expert Syst Appl 113:100–115

    Article  Google Scholar 

  8. Beecks C, Kirchhoff S, Seidl T (2013) Signature matching distance for content-based image retrieval. In: Proceedings of the 3rd ACM conference on international conference on multimedia retrieval (ICMR), pp 41–48

  9. Beecks C, Uysal MS, Seidl T (2010) A comparative study of similarity measures for content-based multimedia retrieval. In: Proceedings of IEEE international conference on multimedia and expo, pp 1552–1557

  10. Bella MIT, Vasuki A (2019) An efficient image retrieval framework using fused information feature. Comput Electr Eng 75:46–60

    Article  Google Scholar 

  11. Bhunia AK, Bhattacharyya A, Banerjee P, Roy PP, Murala S (2020) A novel feature descriptor for image retrieval by combining modified color histogram and dgonally symmetric co-occurrence texture pattern. Pattern Anal Appl 23:703–723

    Article  Google Scholar 

  12. Chakraborty S, Singh SK, Chakraborty P (2018) Local gradient hexa pattern: A descriptor for face recognition and retrieval. IEEE Trans Circ Syst Video Technol 28(1):171–180

    Article  Google Scholar 

  13. Dey M, Raman B, Verma M (2016) A novel colour- and texture-based image retrieval technique using multi-resolution local extrema peak valley pattern and RGB colour histogram. Pattern Anal Appl 19(4):1159–1179

    Article  MathSciNet  Google Scholar 

  14. Dubey SR (2019) Face retrieval using frequency decoded local descriptor. Multimed Tools Appl 78:16411–16431

    Article  Google Scholar 

  15. Dubey SR, Singh SK, Singh RK (2015) Local diagonal extrema pattern: A new and efficient feature descriptor for CT image retrieval. IEEE Signal Process Lett 22(9):1215–1219

    Article  Google Scholar 

  16. Fan K -C, Hung T -Y (2014) A novel local pattern descriptor: Local vector pattern in high-order derivative space for face recognition. IEEE Trans Image Process 23(5):2877–2891

    Article  MathSciNet  MATH  Google Scholar 

  17. Heikkilä M, Pietikäinen M, Schmid C (2006) Description of interest regions with center-symmetric local binary patterns, Computer Vision, Graphics and Image Processing. Springer, Berlin, pp 58–69

    Google Scholar 

  18. Jacob IJ, Srinivasagan K, Jayapriya K (2014) Local oppugnant color texture pattern for image retrieval system. Pattern Recognit Lett 42:72–78

    Article  Google Scholar 

  19. Jegou H, Douze M, Schmid C (2008) Hamming embedding and weak geometry consistency for large scale image search. In: Proceedings of the 10th European conference on computer vision, LNCS (5302), pp 304–317

  20. Kwitt R, Meerwald P (2012) Salzburg texture image database, Available: http://www.wavelab.at/sources/STex

  21. Liu H, Li B, Lv X, Huang Y (2017) Image retrieval using fused deep convolutional features. Procedia Comput Sci 107:749–754

    Article  Google Scholar 

  22. Liu G -H, Yang J -Y (2015) Content-based image retrieval using computational visual attention model. Pattern Recognit 48(8):2554–2566

    Article  Google Scholar 

  23. Liu Y, Zhang D, Lu G, Ma W-Y (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recognit 40:262–282

    Article  MATH  Google Scholar 

  24. Muller H, Michoux N, Bandon D, Geissbuhler A (2004) A review of content-based image retrieval systems in medical applications- clinical benefits and future directions. Int J Med Informat 73(1):1–23

    Article  Google Scholar 

  25. Murala S, Maheshwari R, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content based image retrieval. IEEE Trans Image Process 21(5):2874–2886

    Article  MathSciNet  MATH  Google Scholar 

  26. Murala S, Maheshwari RP, Balasubramanian R (2012) Directional local extrema patterns: A new descriptor for content based image retrieval. Int J Multimed Inf Retr 1(3):191–203

    Article  MATH  Google Scholar 

  27. Murala S, Maheshwari RP, Balasubramanian R (2012) Local maximum edge binary patterns: A new descriptor for image retrieval and object tracking. Signal Process 92(6):1467–1479

    Article  MATH  Google Scholar 

  28. Murala S, Maheshwari RP, Balasubramanian R (2012) Directional binary wavelet patterns for biomedical image indexing and retrieval. J Med Syst 36(5):2865–2879

    Article  Google Scholar 

  29. Murala S, Wu QMJ (2013) Local ternary co-occurrence patterns: A new feature descriptor for MRI and CT image retrieval. Neurocomputing 119:399–412

    Article  Google Scholar 

  30. Murala S, Wu QMJ (2014) Local mesh patterns versus local binary patterns: Biomedical image indexing and retrieval. IEEE J Biomed Health Inform 18(3):929–938

    Article  Google Scholar 

  31. Murala S, Wu QMJ (2015) Spherical symmetric 3D local ternary patterns for natural, texture and biomedical image indexing and retrieval. Neurocomputing 149:1502–1514

    Article  Google Scholar 

  32. Murala S, Wu QJ, Balasubramanian R, Maheshwari R (2013) Joint histogram between color and local extrema patterns for object tracking. In: Video surveillance and transportation imaging applications, vol 8663. International Society for Optics and Photonics, SPIE, pp 230–236

  33. Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recognit 29:51–59

    Article  Google Scholar 

  34. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  35. Peng S, Kim D, Lee S, Lim M (2010) Texture feature extraction on uniformity estimation for local brightness and structure in chest CT images. J Comput Biol Med 40:931–942

    Article  Google Scholar 

  36. Rao KL, Rohini P, Pratap Reddy L (2019) Local color oppugnant quantized extrema patterns for image retrieval. Multidimens Syst Signal Process 30 (3):1413–1435

    Article  MATH  Google Scholar 

  37. Raza A, Nawaz T, Dawood H, Dawood H (2019) Square texton histogram features for image retrieval. Multimed Tools Appl 78(3):2719–2746

    Article  Google Scholar 

  38. Reddy AH, Chandra NS (2015) Local oppugnant color space extrema patterns for content based natural and texture image retrieval. AEU - Int J Electron Commun 69(1):290–298

    Article  Google Scholar 

  39. Rivera AR, Castillo JR, Chae OO (2003) Local directional number pattern for face analysis: Face and expression recognition. IEEE Trans Image Process 22(5):1740–1752

    Article  MathSciNet  MATH  Google Scholar 

  40. Schmid AM-BV (2014) Pattern recognition and signal analysis in medical imaging. Elsevier

  41. Shyu CR, Brodley CE, Kak AC, Kosaka A, Aisen A, Broderick L (1998) Local versus global features for content-based image retrieval. In: Proceedings. IEEE workshop on content-based access of image and video libraries (Cat. No.98EX173)

  42. Sorensen L, Shaker SB, de Bruijne M (2010) Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans Med Imaging 29 (2):559–569

    Article  Google Scholar 

  43. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  MATH  Google Scholar 

  44. Tiwari AK, Kanhangad V, Pachori RB (2017) Histogram refinement for texture descriptor based image retrieval. Signal Process: Image Commun 53:73–85

    Google Scholar 

  45. Vadivel A, Sural S, Majumdar A (2007) An integrated color and intensity co-occurrence matrix. Pattern Recognit Lett 28(8):974–983

    Article  Google Scholar 

  46. Verma M, Raman B (2016) Local tri-directional patterns: A new texture feature descriptor for image retrieval. Digit Signal Process 51:62–72

    Article  MathSciNet  Google Scholar 

  47. Verma M, Raman B (2018) Local neighborhood difference pattern: a new feature descriptor for natural and texture image retrieval. Multimed Tools Appl 77:11843–11866

    Article  Google Scholar 

  48. Verma M, Raman B, Murala S (2015) Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing 165:255–269

    Article  Google Scholar 

  49. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society conference on computer vision and pattern recognition (CVPR), vol 1, pp I–I

  50. Vipparthi SK, Murala S, Gonde AB, Wu QMJ (2016) Local directional mask maximum edge patterns for image retrieval and face recognition. IET Comput Vis 10(3):182–192

    Article  Google Scholar 

  51. Wang JZ, Li J, Wiederhold G (2001) SIMPLIcity: Semantics-sensitive integrated matching for picture libraries. IEEE Trans Pattern Anal Mach Intell 23 (9):947–963

    Article  Google Scholar 

  52. Xu X, Geng W, Ju R, Yang Y, Ren T, Wu G (2014) OBSIR: Object-based stereo image retrieval. In: IEEE international conference on multimedia and expo (ICME), pp 1–6

  53. Xu Y, Li Z, Yang J, Zhang D (2017) A survey of dictionary learning algorithms for face recognition. IEEE Access 5:8502–8514

    Article  Google Scholar 

  54. Yao CH, Chen SY (2003) Retrieval of translated, rotated and scaled color textures. Pattern Recognit 36(4):913–929

    Article  Google Scholar 

  55. Yu L, Feng L, Wang H, Li L, Liu Y, Liu S (2018) Multi-trend binary code descriptor: A novel local texture feature descriptor for image retrieval. Signal Image Video Process 12:247–254

    Article  Google Scholar 

  56. Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhang X, Liu W, Dundar M, Badve S, Zhang S (2015) Towards large-scale histopathological image analysis: Hashing-based image retrieval. IEEE Trans Med Imaging 34(2):496–506

    Article  Google Scholar 

  58. Zhao G, Pietikainen M (2007) Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell 29(6):915–928

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megha Agarwal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhal, A., Agarwal, M. & Pachori, R.B. Directional local ternary co-occurrence pattern for natural image retrieval. Multimed Tools Appl 80, 15901–15920 (2021). https://doi.org/10.1007/s11042-020-10319-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10319-4

Keywords