Skip to main content
Log in

A secure and robust video steganography scheme for covert communication in H.264/AVC

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The proposed scheme utilized H.264/AVC video format for steganography which is the most common video standard at present. The scheme employed Discrete Wavelet Transform (DWT) on the Region of Interest (ROI) based on multiple moving objects tracking. After tracking multiple objects, each object is embedded with different secret images to improve the capacity. Multiple object tracking helps in achieving robustness and security; in addition, secret data is encrypted before embedding to provide a high level of security. The proposed scheme is tested on numerous video sequences by evaluating both subjective and objective metrics. Different metrics employed for objective evaluation involves Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Structural Similarity (SSIM) Index, Normalized Cross Correlation (NCC) and Bit Error Rate (BER). However, subjective evaluation is carried out by visual inspection. Additionally, the proposed scheme has been tested against noise, compression, frame rate change and scaling attacks to ensure robustness. Further, the security performance has been analysed by testing against three existing steganalysis techniques and histogram analysis. The main aim of the paper is to focus on robustness and security without compromising hiding capacity and imperceptibility. The reckoning result proves not only high robustness and security but also improves imperceptibility and capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Johnson NF, Jajodia S (1998) Exploring steganography: seeing the unseen. IEEE Comput 31(2):26–34

    Article  Google Scholar 

  2. Morkel T, Eloff JH, Olivier MS (2005) An overview of image steganography. In ISSA 1(2):1–11

  3. Liu Y, Li Z, Ma X, Liu J (2013) A robust data hiding algorithm for H.264/AVC video streams. J Syst Softw 86(8):2174–2183

    Article  Google Scholar 

  4. S. K. Moon and R. D. Raut, “Analysis of secured video steganography using computer forensics technique for enhance data security,” 2013 IEEE 2nd Int Conf Image Inf Process IEEE ICIIP 2013, pp. 660–665, 2013

  5. Mstafa RJ, Elleithy KM (2015) A high payload video steganography algorithm in DWT domain based on BCH codes (15, 11), 2015 Wireless Telecommunications Symposium (WTS), New York, NY, 2015, pp 1-8. https://doi.org/10.1109/WTS.2015.7117257

  6. Dalal M, Juneja M (2018) Video Steganography Techniques in Spatial Domain-A Survey. In: Proceedings of the International Conference on Computing and Communication Systems. Springer, Singapore, pp 705–711

    Chapter  Google Scholar 

  7. Thahab A (2020) A novel secure video steganography technique using temporal lifted wavelet transform and human vision properties. Int Arab J Inf Technol 17(2):147–153

    Google Scholar 

  8. Ramalingam M, Isa NAM (2014) Video steganography based on integer Haar wavelet transforms for secured data transfer. Indian J Sci Technol 7(7):897–904

    Article  Google Scholar 

  9. Ramalingam M, Isa NAM, Puviarasi R (2020) A secured data hiding using affine transformation in video steganography. Procedia Comput Sci 171:1147–1156

    Article  Google Scholar 

  10. Nyo HL, Oo AW (2019) Secure Data Transmission of Video Steganography Using Arnold Scrambling and DWT. Int J Comput Netw Inf Secur 11(6):45

    Google Scholar 

  11. Chantrapornchai C, Churin K, Preechasuk J, Adulkasem S (2014) Video steganography for hiding image with wavelet coefficients. Int J Multimed Ubiquitous Eng 9(6):385–396

    Google Scholar 

  12. Ahmed EAE, Soliman HH, Mostafa HE (2014) Information hiding in video files using frequency domain. Int J Sci Res 3(6):2431–2437

    Google Scholar 

  13. Suresh M, Sam IS (2020) Optimal wavelet transform using Oppositional Grey Wolf Optimization for video steganography. Multimed Tools Appl 79(37):27023–27037

  14. Mstafa RJ, Elleithy KM (2016) A video steganography algorithm based on Kanade-Lucas-Tomasi tracking algorithm and error correcting codes. Multimed Tools Appl 75(17):10311–10333

    Article  Google Scholar 

  15. Mstafa RJ, Elleithy KM (2015) A new video steganography algorithm based on the multiple object tracking and Hamming codes. In 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp 335–340

  16. Sadek MM, Khalifa AS, Mostafa MG (2017) Robust video steganography algorithm using adaptive skin-tone detection. Multimed Tools Appl 76(2):3065–3085

  17. Mstafa RJ, Elleithy KM, Abdelfattah E (2017) A robust and secure video steganography method in DWT-DCT domains based on multiple object tracking and ECC. IEEE Access 5:5354–5365

    Google Scholar 

  18. Yilmaz A, Javed O, Shah M (2006) Object tracking: A survey. Acm Comput Surv 38(4):13

    Article  Google Scholar 

  19. Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking, in Computer Vision and Pattern Recognition. IEEE Computer Society Conference 2:246–252

    Google Scholar 

  20. Weng S-K, Kuo C-M, Tu S-K (2006) Video object tracking using adaptive Kalman filter. J Vis Commun Image Represent 17(6):1190–1208

    Article  Google Scholar 

  21. Dalal M, Juneja M (2019) A robust and imperceptible steganography technique for SD and HD videos. Multimed Tools Appl 78(5):5769–5789

    Article  Google Scholar 

  22. Li G, Ito Y, Yu X, Nitta N, Babaguchi N (2010) Recoverable privacy protection for video content distribution. EURASIP J Inf Secur 2009(1):293031

    Article  Google Scholar 

  23. Strang G (1989) Wavelets and dilation equations: a brief introduction. SIAM Rev 31(4):614–627

    Article  MathSciNet  Google Scholar 

  24. Abhishek S, Veni S, Narayanankutty KA (2019) Biorthogonal wavelet filters for compressed sensing ECG reconstruction. Biomed Signal Process Control 47:183–195

    Article  Google Scholar 

  25. Salem MA, Ghamry N, Meffert B (2009) Daubechies versus biorthogonal wavelets for moving object detection in traffic monitoring systems. Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Informatik. https://doi.org/10.18452/2487

  26. Dalal M, Juneja M (2020) Evaluation of orthogonal and biorthogonal wavelets for video steganography. Inf Secur J A Glob Perspect 29(1):1–11

    Article  Google Scholar 

  27. Usman M, Ahmed I, Aslam MI, Khan S, Shah UA (2017) SIT: a lightweight encryption algorithm for secure internet of things. Int J Adv Comput Sci Appl 8(1):arXiv:1704.08688

  28. Biryukov A (2005) Feistel Cipher. In: Van Tilborg HCA (ed) Encyclopedia of Cryptography and Security. Springer, Boston

    Google Scholar 

  29. Heys HM (2002) A tutorial on linear and differential cryptanalysis. Cryptologia 26(3):189–221

    Article  Google Scholar 

  30. Goyette N, Jodoin PM, Porikli F, Konrad J, Ishwar P (2012) Changedetection. net: A new change detection benchmark dataset. In 2012 IEEE computer society conference on computer vision and pattern recognition workshops, Providence, RI, pp 1–8. https://doi.org/10.1109/CVPRW.2012.6238919

  31. Abu-El-Haija S, Kothari N, Lee J, Natsev P, Toderici G, Varadarajan B, Vijayanarasimhan S (2016) Youtube-8m: A large-scale video classification benchmark, pp 1-10. arXiv preprint arXiv:1609.08675

  32. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  33. Rezagholipour K, Eshghi M (2016) Video steganography algorithm based on motion vector of moving object. 2016 Eighth International Conference on Information and Knowledge Technology (IKT), Hamedan, pp 183–187. https://doi.org/10.1109/IKT.2016.7777764

  34. Muhammad K, Sajjad M, Mehmood I, Rho S, Baik SW (2016) A novel magic LSB substitution method (M-LSB-SM) using multi-level encryption and achromatic component of an image. Multimed Tools Appl 75(22):14867–14893

    Article  Google Scholar 

  35. He Y, Yang G, Zhu N (2012) A real-time dual watermarking algorithm of H. 264/AVC video stream for video-on-demand service. AEU-International J Electron Commun 66(4):305–312

    Article  Google Scholar 

  36. Briechle K, Hanebeck UD (2001) Template matching using fast normalized cross correlation. Optical Pattern Recognition XII 4387:95–103

    Article  Google Scholar 

  37. Long M, Peng F, Li H (2018) Separable reversible data hiding and encryption for HEVC video. J Real-Time Image Process 14(1):171–182

    Article  Google Scholar 

  38. Mohammed AA, Ali NA (2018) Robust video watermarking scheme using high efficiency video coding attack. Multimed Tools Appl 77(2):2791–2806

    Article  Google Scholar 

  39. Sullivan GJ, Ohm J-R, Han W-J, Wiegand T et al (2012) Overview of the high efficiency video coding(HEVC) standard. IEEE Trans circuits Syst Video Technol 22(12):1649–1668

    Article  Google Scholar 

  40. Li F, Yu J, Ren Y (2019) Data-loss resilience video steganography using frame reference and data ensemble reconstruction. Math Biosci Eng MBE 16(5):4559–4580

    Article  MathSciNet  Google Scholar 

  41. Hemalatha S, Acharya UD, Renuka A (2016) High capacity video steganography technique in transform domain. Pertanika J Sci Technol 24(2):411–422

    Google Scholar 

  42. Gaj S, Patel AS, Sur A (2016) Object based watermarking for H. 264/AVC video resistant to rst attacks. Multimed Tools Appl 75(6):3053–3080

    Article  Google Scholar 

  43. S. A P and A. P P (2010) A compressed video steganography using TPVD. Int J Database Manag Syst 2(3):67–80

    Article  Google Scholar 

  44. Pevny T, Bas P, Fridrich J (2010) Steganalysis by subtractive pixel adjacency matrix. IEEE Trans Inf Forensics Secur 5(2):215–224

    Article  Google Scholar 

  45. Wang K, Han J, Wang H (2014) Digital video steganalysis by subtractive prediction error adjacency matrix. Multimed Tools Appl 72(1):313–330

    Article  Google Scholar 

  46. Da T, Li Z, Feng B (2015) A video steganalysis algorithm for H.264/AVC based on the Markov features. In: Huang DS, Jo KH, Hussain A (eds) Intelligent Computing Theories and Methodologies. ICIC 2015. Lecture Notes in Computer Science, vol 9226. Springer, Cham. https://doi.org/10.1007/978-3-319-22186-1_5

  47. Dalal M, Juneja M (2018) Video steganalysis to obstruct criminal activities for digital forensics: a survey. Int J Electron Secur Digit Forensics 10(4):338–355

    Article  Google Scholar 

  48. Chang C-C, Lin C-J (2011) LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2(3):27

    Article  Google Scholar 

Download references

Acknowledgments

This research work is supported by Technical Education Quality Improvement Project III (TEQIP III) of MHRD, Government of India assisted by World Bank under Grant Number P154523 and sanctioned to UIET, Panjab University, Chandigarh (India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamta Juneja.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalal, M., Juneja, M. A secure and robust video steganography scheme for covert communication in H.264/AVC. Multimed Tools Appl 80, 14383–14407 (2021). https://doi.org/10.1007/s11042-020-10364-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10364-z

Keywords

Navigation