Skip to main content
Log in

Stability analysis of interconnected complex nonlinear systems using the Lyapunov and Finsler property

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This study focuses on the question of the stability analysis of complex interconnected nonlinear systems using the property of Lyapunov and Finsler. The main idea is to minimize the effect of interconnections between the subsystems, for that, we use the Lyapunov function and the H∞ control, then applying Finsler’s lemma to release the conditions of stability, the independent matrices allow to obtain less conservative results. The proposed control approach is formulated in a minimization problem and derived in terms of linear matrix inequalities (LMIs) whose resolution yields the decentralized control gain matrices. All the developed results are tested on two representative examples and compared with some recent previous ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbaszadeh M, Marquez HJ (2012) A generalized framework for robust nonlinear H∞ filtering of Lipschitz descriptor systems with parametric and nonlinear uncertainties. Automatica 48(5):894–900

    Article  MathSciNet  Google Scholar 

  2. Bernussou J, Titli A (1982) Interconnected dynamical systems: stability, decomposition and decentralization, North-Holland

  3. Cheng Q, Cui B (2019) Improved results on robust energy-to-peak filtering for continuous-time uncertain linear systems. Circ Syst Signal Process 38:2335–2350. https://doi.org/10.1007/s00034-018-0965-7

    Article  MathSciNet  Google Scholar 

  4. Hwang JD, Hsiao FH (2003) Stability analysis of neural-network interconnected systems. IEEE Trans Neural Netw 14(1):201–208. https://doi.org/10.1109/TNN.2002.806643

    Article  Google Scholar 

  5. Li J et al (2010) H∞ performance for a class of uncertain linear time-delay systems based on LMI. Int Conf Educ Technol Comput 5:344–348. https://doi.org/10.1109/ICETC.2010.5530057

    Article  Google Scholar 

  6. Lin WW et al (2007) A novel stabilization criterion for large-scale T–S fuzzy systems. IEEE Trans Syst Man Cybern Part B Cybern 37(4):1074–1079. https://doi.org/10.1109/TSMCB.2007.896016

    Article  Google Scholar 

  7. Mahmoud MS, Almutairi NB (2009) Decentralized stabilization of interconnected systems with time-varying delays. Eur J Control 6:624–633. https://doi.org/10.3166/ejc.15.624-633

    Article  MathSciNet  MATH  Google Scholar 

  8. Mahmoud MS, Al-Sunni FM (2010) Interconnected continuous-time switched systems: robust stability and stabilization. Nonlinear Anal Hybrid Syst 4(3):531–542. https://doi.org/10.1016/j.nahs.2010.01.001

    Article  MathSciNet  MATH  Google Scholar 

  9. Souza M, Wirth FR, Shorten RN (2017) A note on recursive Schur complements, Hurwitz stability of Metzler matrices and related results. IEEE Trans Autom Control 62:4167–4172. https://doi.org/10.1109/TAC.2017.2682032

    Article  MathSciNet  MATH  Google Scholar 

  10. Srdjan Stanković S, Siljak D (2009) Robust stabilization of nonlinear interconnected systems by decentralized dynamic output feedback. Syst Control Lett 58(4):271–275. https://doi.org/10.1016/j.sysconle.2008.11.003

    Article  MathSciNet  MATH  Google Scholar 

  11. Thanh Nguyen T, Phat Vu N (2012) Decentralized H∞ control for large-scale interconnected nonlinear time-delay systems via LMI approach. J Process Control 22(7):1325–1339

    Article  Google Scholar 

  12. Wang WJ, Lin W (2005) Decentralized PDC for large scale TS fuzzy systems. IEEE Trans Fuzzy Syst 13(6):779–786. https://doi.org/10.1109/TFUZZ.2005.859309

    Article  Google Scholar 

  13. Zhang Y, Pheng AH (2002) Stability of fuzzy control systems with bounded uncertain delays. IEEE Trans Fuzzy Syst 10:92–97. https://doi.org/10.1109/91.983283

    Article  MATH  Google Scholar 

  14. Zhu Y, Pagilla PR (2007) Decentralized output feedback control of a class of large-scale interconnected systems. IMA J Math Control Inf 24:57–69. https://doi.org/10.1093/imamci/dnl007

    Article  MathSciNet  MATH  Google Scholar 

  15. Zouhri A, Boumhidi I (2015) Decentralized control of interconnected systems with time-delays. 12th ACS/IEEE International Conference on Computer Systems and Applications AICCSA 2015 November 17-20, Marrakech, Morocco. https://doi.org/10.1109/AICCSA.2015.7507224

  16. Zouhri A, Boumhidi I (2016) Decentralized robust H∞ control of large scale systems with polytopic-type uncertainty. Int Rev Autom Control (IREACO) 9(2):103–109. https://doi.org/10.15866/ireaco.v9i2.8728

    Article  Google Scholar 

  17. Zouhri A, Boumhidi I (2017) Decentralized H∞ control of interconnected systems with time-varying delays. CIT J Comput Inf Technol 25(3):167–180

    Article  Google Scholar 

  18. Zouhri A, Benyakhlef M, Kririm S, BOUMHIDI I (2016) Robust stability and H∞ analysis for interconnected uncertain systems. Int J Math Stat 17(1):55–66

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Zouhri.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Decentralized State Feedback H Control

In this Appendix, we verify the inequality (19) used in section 3, with:

$$ {\varphi}_i=\sum \limits_{j=1,j\ne i}^N{A}_{ij}{x}_j\left(t-{\eta}_{ij}(t)\right) $$
(A.1)
$$ {\displaystyle \begin{array}{c}{\varphi}_i^T{\varphi}_i={\left(\sum \limits_{j=1,j\ne i}^N{A}_{ij}{x}_j\left(t-{\eta}_{ij}(t)\right)\right)}^T\sum \limits_{j=1,j\ne i}^N{A}_{ij}{x}_j\left(t-{\eta}_{ij}(t)\right)\\ {}\kern1.44em =\sum \limits_{j=1,j\ne i}^N\sum \limits_{\begin{array}{c}l=1\\ {}l\ne i,l\ne j\end{array}}^N\left({x}_j^T\left(t-{\eta}_{ij}(t)\right){A}_{ij}^T{A}_{il}{x}_l\left(t-{\eta}_{ij}(t)\right)+{x}_l^T\left(t-{\eta}_{ij}(t)\right){A}_{il}^T{A}_{ij}{x}_j\left(t-{\eta}_{ij}(t)\right)\right)\\ {}\kern1.32em +\sum \limits_{j=1,j\ne i}^N{x}_j^T\left(t-{\eta}_{ij}(t)\right){A}_{ij}^T{A}_{ij}{x}_j\left(t-{\eta}_{ij}(t)\right)\\ {}\kern1.32em =\sum \limits_{j=1,j\ne i}^N\Big[{x}_j^T\left(t-{\eta}_{ij}(t)\right){A}_{ij}^T{A}_{ij}{x}_j\left(t-{\eta}_{ij}(t)\right)\\ {}\kern1.2em +\sum \limits_{\begin{array}{c}l=1\\ {}l\ne i,l\ne j\end{array}}^N\left({x}_j^T\left(t-{\eta}_{ij}(t)\right){A}_{ij}^T{A}_{il}{x}_l\left(t-{\eta}_{ij}(t)\right)+{x}_l^T\left(t-{\eta}_{ij}(t)\right){A}_{il}^T{A}_{ij}{x}_j\left(t-{\eta}_{ij}(t)\right)\right)\end{array}} $$
(A.2)

Apply the lemma of the square matrix, we have:

$$ {\displaystyle \begin{array}{c}\sum \limits_{\begin{array}{c}\kern0.6em l=1\\ {}l\ne i,l\ne j\end{array}}^N\left({x}_j^T\left(t-{\eta}_{ij}(t)\right){A}_{ij}^T{A}_{il}{x}_l\left(t-{\eta}_{ij}(t)\right)+{x}_l^T\left(t-{\eta}_{ij}(t)\right){A}_{il}^T{A}_{ij}{x}_j\left(t-{\eta}_{ij}(t)\right)\right)\\ {}\kern0.72em \le \sum \limits_{\begin{array}{c}\kern0.6em l=1\\ {}l\ne i,l\ne j\end{array}}^N{\left[{A}_{ij}{x}_j\left(t-{\eta}_{ij}(t)\right)\right]}^T\left[{A}_{ij}{x}_j\left(t-{\eta}_{ij}(t)\right)\right]+{\left[{A}_{il}{x}_l\left(t-{\eta}_{ij}(t)\right)\right]}^T\left[{A}_{il}{x}_l\left(t-{\eta}_{ij}(t)\right)\right]\kern1.92em \\ {}\kern0.6em =\left(N-2\right){\left[{A}_{ij}{x}_j\left(t-{\eta}_{ij}(t)\right)\right]}^T{A}_{ij}{x}_j\left(t-{\eta}_{ij}(t)\right)+\sum \limits_{\begin{array}{c}\kern0.6em l=1\\ {}l\ne i,l\ne j\end{array}}^N{\left[{A}_{il}{x}_l\left(t-{\eta}_{ij}(t)\right)\right]}^T\left[{A}_{il}{x}_l\left(t-{\eta}_{ij}(t)\right)\right]\\ {}\kern1.44em \end{array}} $$
(A.3)

Then

$$ {\varphi}_i^T{\varphi}_i\le \sum \limits_{j=1,j\ne i}^N\left(\left(N-1\right){x}_j^T\left(t-{\eta}_{ij}(t)\right){A}_{ij}^T{A}_{ij}{x}_j\left(t-{n}_{ij}(t)\right)+\sum \limits_{\begin{array}{c}l=1\\ {}l\ne i,l\ne j\end{array}}^N{x}_l^T\left(t-{\eta}_{ij}(t)\right){A}_{ij}^T{A}_{il}{x}_l\left(t-{\eta}_{ij}(t)\right)\right) $$
(A.4)

Since

$$ \sum \limits_{j=1,j\ne i}^N\left({\psi}_{ij}+\sum \limits_{\begin{array}{l}\kern0.6em l=1\\ {}l\ne i,l\ne j\end{array}}^N{\psi}_{il}\right)=\left(N-1\right)\sum \limits_{j=1,j\ne i}^N{\psi}_{ij} $$
(A.5)

Inequality (A.4) can be rewritten as follows:

$$ {\varphi}_i^T{\varphi}_i\le \left(2N-3\right)\sum \limits_{j=1,j\ne i}^N{x}_j^T\left(t-{\eta}_{ij}(t)\right){A}_{ij}^T{A}_{ij}{x}_j\left(t-{\eta}_{ij}(t)\right) $$
(A.6)

Finally, the inequality (24) is verified.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zouhri, A., Boumhidi, I. Stability analysis of interconnected complex nonlinear systems using the Lyapunov and Finsler property. Multimed Tools Appl 80, 19971–19988 (2021). https://doi.org/10.1007/s11042-020-10449-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10449-9

Keywords

Navigation