Abstract
In this work, we propose a new set of \(H_{\infty }\) deconvolution filtering of 2-D color image using feature extraction of local descriptor and Fornasini-Machesini II (FM-II) model. The principal goal is to design 2-D deconvolution filter to reconstruct the noisy color image with the minimal information extracted from local Krawtchouk moment, Moreover, the filtering error system is asymptotically stable and satisfy the \(H_{\infty }\) performance index. the sufficient condition is given to ensure the \(H_{\infty }\) performance of the filtering error system through the Lyapunov theory, and the local Krawtckouk moment to give the feature extraction according to the order defined in advance instead of the global color image. Moreover, the 2-D deconvolution filter is designed to achieve the \(H_{\infty }\) performance index which the filter parameters are determined with certain optimization resolution. Finally, simulation example is provided to demonstrate the usefulness of the proposed design methods.
Similar content being viewed by others
References
Amakdouf H, Zouhri A, EL Mallahi M et al (2020) Color image analysis of quaternion discrete radial Krawtchouk moments. Multimed Tools Appl 79:26571–26586. https://doi.org/10.1007/s11042-020-09120-0
Amakdouf H, Zouhri A, El Mallahi M et al (2020) Artificial intelligent classification of biomedical color image using quaternion discrete radial Tchebichef moments. Multimed Tools Appl. https://doi.org/10.1007/s11042-020-09781-x
Benzaouia A, El Younsi L, El Hajjaji A (2019) Stability and stabilization analysis for T–S interconnected fuzzy systems using LMIs. Circ Syst Signal Process 38:4504–4525. https://doi.org/10.1007/s00034-019-01082-5
Boukili B, Hmamed A, Benzaouia A, EL Hajjaji A (2014) \(H_{\infty }\) filtering of two-dimensional T-S fuzzy system. Circ Syst Signal Process. https://doi.org/10.1007/s00034-013-9720-2
Boukili B, Hmamed A, Tadeo F (2016) Reduced-order \(H_{\infty }\) filtering with intermittent measurements for a class of 2D systems. J Control Autom Electr Syst. https://doi.org/10.1007/s40313-016-0271-1
Boukili B, Hmamed A, Tadeo F (2016) Robust \(H_{\infty }\) filtering for 2-D discrete Roesser systems. J Control Autom Electr Syst. https://doi.org/10.1007/s40313-016-0251-5
Chen SF, Fong IK (2006) Robust \(H_{\infty }\) filtering for 2-D state-delayed systems with NFT uncertainties. IEEE Trans Signal Process 54(1):274–285
Chen BS, Peng SC (1991) Optimal deconvolution filter design based on orthogonal principle. Signal Process 25:361–372
Chucu L, Mosca E (1994) MMSE deconvolution via polynomial methods and its dual LQG regulation. Automatica 30:1197–1201
Cui JR, Hu GD (2010) State estimation of 2-D stochastic systems represented by FM-II model. Acta Autom Sin 36(5):755–761. https://doi.org/10.1016/S1874-1029(09)60034-3
Dami L, Benhayoun M, Benzaouia A (2020) Admissibility and stabilization of singular continuous 2D systems described by Roesser model. Multidimen Syst Sign Process 31:673–687. https://doi.org/10.1007/s11045-019-00681-4
Ding DW, Du X, Li X (2015) Finite-frequency model reduction of two-dimensional digital filters. IEEE Trans Autom Control 60(6):1624–1629
Du C, Xie L, Soh YC (2000) \(H_{\infty }\) filtering of 2-D discrete systems. IEEE Trans Signal Process 48(6):1760–1768
El-Amrani A, Boukili B, Hmamed A, El Hajjaji A, Boumhidi I (2018) Robust \(H_{\infty }\) filtering for 2D continuous systems with finite frequency specifications. Int J Syst Sci. https://doi.org/10.1080/00207721.2017.1391960
El Mallahi M, Zouhri A, El-Mekkaoui J et al (2017) Three dimensional radial Tchebichef moment invariants for volumetric image recognition. Pattern Recognit. Image Anal 27:810–824. https://doi.org/10.1134/S1054661817040113
El Mallahi M, Zouhri A, Amakdouf H, Qjidaa H (2018) Rotation scaling and translation invariants of 3D radial shifted legendre moments. Springer, Int J Autom Comput 15(2):169–180. Springer
El Mallahi M, Mesbah A, Qjidaa H (2018) 3D radial invariant of dual Hahn moments. Neural Comput Appl 30(7):2283–22. Springer
El Mallahi M, Zouhri A, Mesbah A et al (2018) Radial invariant of 2D and 3D Racah moments. Multimed Tools Appl 77:6583–6604. https://doi.org/10.1007/s11042-017-4573-5
El Mallahi M, Zouhri A, Mesbah A, El Affar I, Qjidaa H (2018) Radial invariant of 2D and 3D Racah moments. Multimed Tools Appl Int J 77 (6):6583–6604. Springer
Gao H, Lam J, Wang C, Xu S (2005) \(H_{\infty }\) model reduction for uncertain two-dimensional discrete systems. Optim Control Appl Methods 26:199–227
Kaczorek T (2009) LMI approach to stability of 2D positive systems. Multidim Syst Sign Process 20:39–54. https://doi.org/10.1007/s11045-008-0050-7
Kririm S, Hmamed A, Tadeo F (2015) Robust \(H_{\infty }\) filtering for uncertain 2D singular Roesser models. Circ Syst Signal Process 34 (7):2213–2235. https://doi.org/10.1007/s00034-015-9967-x
Lacerda MJ, Oliveira RCLF, Peres PLD (2011) Robust H2 and \(H_{\infty }\) Filter Design for uncertain linear systems via LMIs and polynomial matrices. Signal Process 91:1115–1122
Mesbah A, Zouhri A, El Mallahi M, Qjidaa H (2017) Robust Reconstruction and Generalized Dual Hahn Moments Invariants Extraction for 3D Images. Springer, 3D Research Center, Kwangwoon University and Springer, Berlin. 18(7), Issues 29
Nathan R (1966) Digital video handling. Jet Propulsion Lab., Pasadena, Tech. Rep. 32-877
Rajan S, Joo KS, Bose T (1996) Analysis of 2-D state-space periodi-cally shift-variant discrete systems. Circuits Syst Signal Process 15(3):395–413
Souza CE, Xie L, Coutinho DF (2010) Robust filtering for 2-D discrete-time linear systems with convex-bounded parameter uncertainty. Automatica 46:673–681
Wei G, Wang Z, Shu H, Fang G (2007) \(H_{\infty }\) deconvolution filter for stochastic systems with interval uncertainties. Circ Syst Signal Process 26(4):495–512. https://doi.org/10.1007/s00034-007-4004-x
Wu L, Shi P, Gao H, Wang C (2008) \(H_{\infty }\) filtering for 2D Markovian jump systems. Automatica 44(7):1849–1858
Xiao B, Ma JF, Cui JT (2012) Radial Tchebichef moment invariants for image recognition. J Vis Commun Image Represent 23(2):381–386. https://doi.org/10.1016/j.jvcir.2011.11.008
Xiao B, Zhang YH, Li LP, Li WS, Wang G (2016) Explicit Krawtchouk moment invariants for invariant image recognition. J Electron Imaging 25 (2):Article number 023002. https://doi.org/10.1117/1.JEI.25.2
Xie L, Wang S, Du C, Zhang C (2000) Hdeconvolution of periodic channels. Signal Process 80:2365–2378
Xie L, Du C, Zhang C, Soh YC (2002) \(H_{\infty }\) deconvolution filtering of 2-D digital systems. IEEE Trans Signal Process 50(9):2319–2332
Xu S, Lam J, Zou Y, Lin Z, Paszke W (2005) Robust \(H_{\infty }\) filtering for uncertain 2-D continuous systems. IEEE Trans Signal Process 53 (5):1731–1738
Zhang B, Lam J, Xu S (2009) Deconvolution filtering for stochastic systems via homogeneous polynomial Lyapunov function. Signal Process 89:605–614
Zouhri A, Amakdouf H, El Mallahi M et al (2020) Invariant Gaussian–Hermite moments based neural networks for 3D object classification. Pattern Recognit Image Anal 30:87–96. https://doi.org/10.1134/S1054661820010186
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interests
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
El Mallahi, M., Boukili, B., Zouhri, A. et al. Robust \(H_{\infty }\) deconvolution filtering of 2-D digital systems of orthogonal local descriptor. Multimed Tools Appl 80, 25965–25983 (2021). https://doi.org/10.1007/s11042-021-10845-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-021-10845-9