Skip to main content

Advertisement

Log in

Local features integration for content-based image retrieval based on color, texture, and shape

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Imaging techniques like computed tomography (CT) and ultrasound are employed to provide valuable information for physicians, including size, contour, and internal organs’ anatomical information. Information retrieval systems can be used to deliver on-time information to the radiologists when some sections of scans are lost. In this study, a new content-based image retrieval (CBIR) model based on an effective combination of color, texture, and shape features is proposed to reconstruct these images’ corrupted portions. For this purpose, image scans are normalized, and their noise is reduced by employing a median filter. Then, the color channel shift is modified utilizing the Simple Linear Iterative Clustering (SLIC) superpixel. Afterward, a Histogram of Oriented Gradients (HOG) descriptor is introduced to enhance image contrast and feature extraction. Finally, local thresholding based on Local Binary Patterns (LBP) is performed to separate the image details into three components to examine the light and edge intensity. The proposed method is experimented on several images by evaluating the texture, color, and shape morphology of the reconstructed images compared to the ground truth. The highest content retrieval rate of 90.54% on a liver CT scan image demonstrates the proposed method’s efficiency compared with former state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alsmadi MK (2017) An efficient similarity measure for content based image retrieval using memetic algorithm. Egypt J Basic Appl Sci 4(2):112–122. https://doi.org/10.1016/j.ejbas.2017.02.004

    Article  Google Scholar 

  2. Alsmadi MK (2018) Query-sensitive similarity measure for content-based image retrieval using meta-heuristic algorithm. J King Saud Univ Comput Inf Sci 30(3):373–381. https://doi.org/10.1016/j.jksuci.2017.05.002

    Article  Google Scholar 

  3. Bazzani L, Cristani M, Murino VJCV (2013) Symmetry-driven accumulation of local features for human characterization and re-identification. Comput Vis Image Underst 117(2):130–144

    Article  Google Scholar 

  4. Berens J, Finlayson GD, Qiu G (2000) Image indexing using compressed colour histograms. IEE Proc Vis Image Sig Process 147(4):349–355

    Article  Google Scholar 

  5. Bianconi F, Bello-Cerezo R, Napoletano PJJOEI (2017) Improved opponent color local binary patterns: an effective local image descriptor for color texture classification. J Electron Imaging 27(1):011002

    Article  Google Scholar 

  6. Brahnam S, Jain LC, Nanni L, Lumini A (2014) Local binary patterns: new variants and applications. Springer

  7. Cai D, Gu X, Wang C (2017) A revisit on deep hashings for large-scale content based image retrieval. arXiv preprint arXiv:1711.06016

  8. Chang S-K, Hsu A (1992) Image information systems: where do we go from here?. IEEE Trans Knowl Data Eng 4:431–42

  9. Chu J, Min H, Liu L, Lu W (2015) A novel computer aided breast mass detection scheme based on morphological enhancement and SLIC superpixel segmentation. Med Phys 42(7):3859–3869. https://doi.org/10.1118/1.4921612

    Article  Google Scholar 

  10. Ciocca G, Cusano C, Schettini RJMT (2015) Image orientation detection using LBP-based features and logistic regression. Multimed Tools Appl 74(9):3013–3034

    Article  Google Scholar 

  11. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05). IEEE, pp. 886–893

  12. Dy JG, Brodley CE, Kak A, Broderick LS, Aisen AM (2003) Unsupervised feature selection applied to content-based retrieval of lung images. IEEE Trans Pattern Anal Mach Intell 25:373–8

  13. Elango P, Murugesan K (2009) Digital image inpainting using cellular neural network. Int J Open Probl Compt Math 2(3):439–450

    Google Scholar 

  14. Favorskaya M, Jain LC, Bolgov A (2014) Image inpainting based on self-organizing maps by using multi-agent implementation. Procedia Comput Sci 35:861–870

    Article  Google Scholar 

  15. Feng L, Li H, Gao Y, Zhang Y (2020) A color image segmentation method based on region salient color and fuzzy c-means algorithm. Circ Syst Sig Process 39(2):586–610

    Article  Google Scholar 

  16. Gevers T, Smeulders AW (2000) Pictoseek: combining color and shape invariant features for image retrieval. IEEE Trans Image Process 9(1):102–119

    Article  Google Scholar 

  17. Ghosh P, Antani S, Long LR, Thoma GR (2011) Review of medical image retrieval systems and future directions. 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), pp 1–6

  18. Hafner J, Sawhney HS, Equitz W, Flickner M, Niblack W (1995) Efficient color histogram indexing for quadratic form distance functions. IEEE Trans Pattern Anal Mach Intell 17(7):729–736

    Article  Google Scholar 

  19. Han J, Ma K-K (2002) Fuzzy color histogram and its use in color image retrieval. IEEE Trans Image Process 11(8):944–952

    Article  Google Scholar 

  20. Hiremath P, Pujari J (2007) Content based image retrieval based on color, texture and shape features using image and its complement. Int J Comput Sci Secur 1(4):25–35

    Google Scholar 

  21. Humeau-Heurtier A (2019) Texture feature extraction methods: A survey. IEEE Access 7:8975–9000

    Article  Google Scholar 

  22. Jahne B (2004) Practical handbook on image processing for scientific and technical applications. CRC press

  23. Jindal H, Kasana SS, Saxena S (2016) A novel image zooming technique using wavelet Coefficients Proceedings of the International Conference on Recent Cognizance in Wireless Communication & Image Processing. Springer, pp. 1-7

  24. Kaur S, Jindal H (2017) Enhanced image watermarking technique using wavelets and interpolation. Int J Image Graph Sig Process 11(7):23

    Google Scholar 

  25. Kavitha S, Thyagharajan K (2015) Analysis of multimodality brain images using machine learning techniques 2015 Int Conf Commun Sig Process (ICCSP). IEEE, pp. 1482-1486

  26. Kavitha S, Thyagharajan K (2017) Efficient DWT-based fusion techniques using genetic algorithm for optimal parameter estimation. Soft Comput 21(12):3307–3316

    Article  Google Scholar 

  27. Korn P, Sidiropoulos N, Faloutsos C, Siegel E, Protopapas Z (1998) Fast and effective retrieval of medical tumor shapes. IEEE Trans Knowl Data Eng 10:889–904

  28. Li Y, Jeong D, Choi J-I, Lee S, Kim J (2015) Fast local image inpainting based on the Allen–Cahn model. Dig Sig Process 37:65–74

    Article  Google Scholar 

  29. Li J, Wang JZ (2003) Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans Pattern Anal Mach Intell 25(9):1075–1088

    Article  Google Scholar 

  30. Li X, Chen S-C, Shyu M-L (2002) Furht B. Image retrieval by color, texture, and spatial information. Proceedings of the 8th international conference on distributed multimedia systems, pp 152–9

  31. Li K, Zou C, Bu S, Liang Y, Zhang J, Gong MJPR (2018) Multi-modal feature fusion for geographic image annotation 7:1–14

  32. Liu Z, Huang C, Suo H, Yang B (2019) A novel content based image retrieval scheme in cloud Computing International Conference on Artificial Intelligence and Security. Springer, pp. 606-616

  33. Liu Y, Yu M, Li B, He Y (2018) Intrinsic manifold SLIC: A simple and efficient method for computing content-sensitive Superpixels. IEEE Trans Pattern Anal Mach Intell 40(3):653–666. https://doi.org/10.1109/TPAMI.2017.2686857

    Article  Google Scholar 

  34. Long F, Zhang H, Feng DD (2003) Fundamentals of content-based image retrieval. Multimedia information retrieval and management. Springer, pp 1-26

  35. Mander K, Jindal H (2017) An improved image compression-decompression technique using block truncation and wavelets. Int J Image Graph Sig Process 9(8):17

    Google Scholar 

  36. Mehmood Z, Abbas F, Mahmood T, Javid MA, Rehman A, Nawaz TJAJFS (2018) Content-based image retrieval based on visual words fusion versus features fusion of local and global features. Arab J Sci Eng 43(12):7265–7284

    Article  Google Scholar 

  37. Minu RI, Thyagarajan KK (2013) A novel approach to build image ontology using texton. Intelligent Informatics, Springer, 333–339

  38. Minu R, Thyagharajan K (2014) Semantic rule based image visual feature ontology creation. Int J Autom Comput 11(5):489–499

    Article  Google Scholar 

  39. Mittal A, Jindal H (2017) Novelty in image reconstruction using DWT and CLAHE. Int J Image Graph Sign Process 9(5):28

    Article  Google Scholar 

  40. Nagarajan G, Thyagharajan K (2012) A machine learning technique for semantic search engine. Procedia Eng 38:2164–2171

    Article  Google Scholar 

  41. Nagarajan G, Thyagharajan KK (2014) Rule-based semantic content extraction in image using fuzzy ontology. Int Rev Comput Softw 9(2):266–277

    Google Scholar 

  42. Nomir O, Abdel-Mottaleb M (2008) Hierarchical contour matching for dental X-ray radiographs. Pattern Recog 41:130–138

  43. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29(1):51–59

    Article  Google Scholar 

  44. Oliveira LLG, e Silva SA, Ribeiro LHV, de Oliveira RM, Coelho CJ, Andrade ALS (2008) Computeraided diagnosis in chest radiography for detection of childhood pneumonia. Int J Med Inform 77:555–564

  45. Owais M, Arsalan M, Choi J, Park KR (2019) Effective diagnosis and treatment through content-based medical image retrieval (CBMIR) by using artificial intelligence. J Clin Med 8(4):462

  46. Pattanaik S, Bhalke D (2012) Efficient content based image retrieval system using Mpeg-7 features. Int J Comput Appl 53:19–24

    Google Scholar 

  47. Qin C, Sun M, Chang C-C (2018) Perceptual hashing for color images based on hybrid extraction of structural features. Signal Process 142:194–205

    Article  Google Scholar 

  48. Sajjad M, Ullah A, Ahmad J, Abbas N, Rho S, Baik SW (2018) Integrating salient colors with rotational invariant texture features for image representation in retrieval systems. Multimed Tools Appl 77(4):4769–4789

    Article  Google Scholar 

  49. Sakr NA, ELdesouky AI, Arafat HJC (2016) An efficient fast-response content-based image retrieval framework for big data. Comput Electr Eng 54:522–538

    Article  Google Scholar 

  50. Sharif U, Mehmood Z, Mahmood T, Javid MA, Rehman A, Saba T (2019) Scene analysis and search using local features and support vector machine for effective content-based image retrieval. Artif Intell Rev 52:901–25

  51. Sundaram H, Naphade M, Smith J, Rui Y (2006) Image and Video Retrieval. 5th Internatinoal Conference, CIVR 2006, Tempe, AZ, USA, July 13-15, 2006, Proceedings. Springer

  52. Swain MJ, Ballard DH (1992) Indexing via Color Histograms. In: Sood AK, Wechsler H (eds) Active Perception and Robot Vision. 1992//. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 261–273

    Chapter  Google Scholar 

  53. Thyagharajan KK, Raji IK (2019) A review of visual descriptors and classification techniques used in leaf species identification. Arch Comput Methods Eng 26(4):933–960

    Article  Google Scholar 

  54. Torrione PA, Morton KD, Sakaguchi R, Collins LMJITOG, Sensing R (2013) Histograms of oriented gradients for landmine detection in ground-penetrating radar data. IEEE Trans Geosci Remote Sens 52(3):1539–1550

    Article  Google Scholar 

  55. Tyagi V (2017) Content-Based Image Retrieval. Springer Nature

  56. Unar S, Wang X, Zhang C (2018) Visual and textual information fusion using kernel method for content based image retrieval. Inf Fusion 44:176–187

    Article  Google Scholar 

  57. Veltkamp RC, Tanase M (2000) Content-based image retrieval systems: A survey

  58. Xie J, Xu L, Chen E (2012) Image denoising and inpainting with deep neural networks Adv Neural Inf Process Syst, pp 341–349

  59. Xu X, Lee D-J, Antani S, Long LR (2008) A spine X-ray image retrieval system using partial shape matching. IEEE Trans Inf Technol Biomed 12:100–108

  60. Yu S-N, Chiang C-T, Hsieh C-C (2005) A three-object model for the similarity searches of chest CT images. Comput Med Imaging Graph 29:617–30

  61. Zagoris K, Chatzichristofis SA, Papamarkos N, Boutalis YS (2009) img (Anaktisi): A web content based image retrieval system. Proceedings of the 2009 Second International Workshop on Similarity Search and Applications: IEEE Computer Society, pp 154–5

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamid Ghadiri or Mohammad Hamghalam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghahremani, M., Ghadiri, H. & Hamghalam, M. Local features integration for content-based image retrieval based on color, texture, and shape. Multimed Tools Appl 80, 28245–28263 (2021). https://doi.org/10.1007/s11042-021-10895-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10895-z

Keywords

Navigation