Skip to main content

Advertisement

Log in

RD2A: densely connected residual networks using ASPP for brain tumor segmentation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The variations among shapes, sizes, and locations of tumors are obstacles for accurate automatic segmentation. U-Net is a simplified approach for automatic segmentation. Generally, the convolutional or the dilated convolutional layers are used for brain tumor segmentation. However, existing segmentation methods of the significant dilation rates degrade the final accuracy. Moreover, tuning parameters and imbalance ratio between the different tumor classes are the issues for segmentation. The proposed model, known as Residual-Dilated Dense Atrous-Spatial Pyramid Pooling (RD2A) 3D U-Net, is found adequate to solve these issues. The RD2A is the combination of the residual connections, dilation, and dense ASPP to preserve more contextual information of small sizes of tumors at each level encoder path. The multi-scale contextual information minimizes the ambiguities among the tissues of the white matter (WM) and gray matter (GM) of the infant’s brain MRI. The BRATS 2018, BRATS 2019, and iSeg-2019 datasets are used on different evaluation metrics to validate the RD2A. In the BRATS 2018 validation dataset, the proposed model achieves the average dice scores of 90.88, 84.46, and 78.18 for the whole tumor, the tumor core, and the enhancing tumor, respectively. We also evaluated on iSeg-2019 testing set, where the proposed approach achieves the average dice scores of 79.804, 77.925, and 80.569 for the cerebrospinal fluid (CSF), the gray matter (GM), and the white matter (WM), respectively. Furthermore, the presented work also obtains the mean dice scores of 90.35, 82.34, and 71.93 for the whole tumor, the tumor core, and the enhancing tumor, respectively on the BRATS 2019 validation dataset. Experimentally, it is found that the proposed approach is ideal for exploiting the full contextual information of the 3D brain MRI datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

BRATS 2018 datasets

The description of the datasets and procedures to download them can be accessedFootnote 4.

BRATS 2019 datasets

The description of the datasets and procedures to download them can be accessedFootnote 5.

iSeg-2019 datasets

The description of the datasets and procedures to download them can be accessedFootnote 6.

Notes

  1. https://cbica.github.io/CaPTk/preprocessing_brats.html

  2. https://ipp.cbica.upenn.edu

  3. https://ipp.cbica.upenn.edu/

  4. https://www.med.upenn.edu/sbia/BraTS2018/data.html

  5. https://www.med.upenn.edu/cbica/BraTS2019/data.html

  6. https://iseg2019.web.unc.edu/data/

References

  1. Ahmad P, Qamar S, Hashemi SR, Shen L (2020) Hybrid labels for brain tumor segmentation. In: Crimi A, Bakas S (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 158–166

  2. Albiol A, Albiol A, Albiol F (2019) Extending 2D deep learning architectures to 3D image segmentation problems. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 73–82

  3. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J, Freymann J, Farahani K, Davatzikos C (2017) Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017)

  4. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J, Freymann J, Farahani K, Davatzikos C (2017) Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive 286

  5. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J, Freymann JB, Farahani K, Davatzikos C (2017) Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 4:170117. https://doi.org/10.1038/sdata.2017.117

  6. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara RT, Berger C, Ha SM, Rozycki M, Prastawa M, Alberts E, Lipková J, Freymann JB, Kirby J, Bilello M, Fathallah-Shaykh HM, Wiest R, Kirschke J, Wiestler B, Colen RR, Kotrotsou A, LaMontagne P, Marcus DS, Milchenko M, Nazeri A, Weber M, Mahajan A, Baid U, Kwon D, Agarwal M, Alam M, Albiol A, Albiol A, Varghese A, Tuan TA, Arbel T, Avery ABP, Banerjee S, Batchelder T, Batmanghelich K, Battistella E, Bendszus M, Benson E, Bernal J, Biros G, Cabezas M, Chandra S, Chang YJ et al (2018) Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the {BRATS} Challenge. CoRR arXiv:1811.02629

  7. Carver E, Liu C, Zong W, Dai Z, Snyder JM, Lee J, Wen N (2019) Automatic brain tumor segmentation and overall survival prediction using machine learning algorithms. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 406–418

  8. Chandra S, Vakalopoulou M, Fidon L, Battistella E, Estienne T, Sun R, Robert C, Deutsch E, Paragios N (2019) Context Aware 3D CNNs for Brain Tumor Segmentation. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 299–310

  9. Chen LC, Papandreou G, Schroff F, Adam H (2017) Rethinking Atrous Convolution for Semantic Image Segmentation. CoRR arXiv:1706.05587

  10. Chen W, Liu B, Peng S, Sun J, Qiao X (2019) S3d-UNet: Separable 3D U-Net for Brain Tumor Segmentation. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 358–368

  11. Devalla SK, Renukanand PK, Sreedhar BK, Perera SA, Mari JM, Chin KS, Tun TA, Strouthidis NG, Aung T, Thiery AH, Girard MJA (2018) {DRUNET:}{A} Dilated-Residual U-Net Deep Learning Network to Digitally Stain Optic Nerve Head Tissues in Optical Coherence Tomography Images. CoRR arXiv:1803.00232

  12. Dolz J, Ayed IB, Desrosiers C (2018) Dense Multi-path U-Net for Ischemic Stroke Lesion Segmentation in Multiple Image Modalities. CoRR arXiv:1810.07003

  13. Dolz J, Xu X, Rony J, Yuan J, Liu Y, Granger E, Desrosiers C, Zhang X, Ayed IB, Lu H (2018) Multi-region segmentation of bladder cancer structures in {MRI} with progressive dilated convolutional networks. CoRR arXiv:1805.10720

  14. Feng X, Tustison N, Meyer C (2019) Brain tumor segmentation using an ensemble of 3D U-Nets and overall survival prediction using radiomic features. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 279–288

  15. He K, Zhang X, Ren S, Sun J (2015) Deep Residual Learning for Image Recognition. CoRR arXiv:1512.03385

  16. Heller N, Sathianathen N, Kalapara A, Walczak E, Moore K, Kaluzniak H, Rosenberg J, Blake P, Rengel Z, Oestreich M et al (2019) The kits19 challenge data: 300 kidney tumor cases with clinical context, ct semantic segmentations, and surgical outcomes. arXiv:1904.00445

  17. Hu Y, Liu X, Wen X, Niu C, Xia Y (2019) Brain Tumor Segmentation on Multimodal MR Imaging Using Multi-level Upsampling in Decoder. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 168–177

  18. Hua R, Huo Q, Gao Y, Sun Y, Shi F (2019) Multimodal brain tumor segmentation using cascaded V-Nets. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 49–60

  19. Huang G, Liu Z, Weinberger KQ (2016) Densely Connected Convolutional Networks. CoRR arXiv:1608.06993

  20. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2018) Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the {BRATS} 2017 Challenge. CoRR arXiv:1802.10508

  21. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2019) No New-Net. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, pp 234–244

  22. Jégou S, Drozdzal M, Vázquez D, Romero A, Bengio Y (2016) The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. CoRR arXiv:1611.09326

  23. Kamnitsas K, Bai W, Ferrante E, McDonagh SG, Sinclair M, Pawlowski N, Rajchl M, Lee MCH, Kainz B, Rueckert D, Glocker B (2017) Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation. CoRR arXiv:1711.01468

  24. Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78

  25. Kao PY, Ngo T, Zhang A, Chen JW, Manjunath BS (2019) Brain tumor segmentation and tractographic feature extraction from structural MR images for overall survival prediction. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 128–141

  26. Kermi A, Mahmoudi I, Khadir MT (2019) Deep convolutional neural networks using U-Net for automatic brain tumor segmentation in multimodal MRI volumes. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 37–48

  27. Kori A, Soni M, Pranjal B, Khened M, Alex V, Krishnamurthi G (2019) Ensemble of fully convolutional neural network for brain tumor segmentation from magnetic resonance images. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 485–496

  28. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  29. Liu L, Cheng J, Quan Q, Wu FX, Wang YP, Wang J (2020) A survey on U-shaped networks in medical image segmentations. Neurocomputing 409:244–258. https://doi.org/10.1016/j.neucom.2020.05.070. http://www.sciencedirect.com/science/article/pii/S0925231220309218

  30. Long J, Shelhamer E, Darrell T (2014) Fully Convolutional Networks for Semantic Segmentation. CoRR arXiv:1411.4038

  31. Luo W, Li Y, Urtasun R, Zemel RS (2017) Understanding the Effective Receptive Field in Deep Convolutional Neural Networks. CoRR arXiv:1701.04128

  32. Ma J, Yang X (2019) Automatic Brain Tumor Segmentation by Exploring the Multi-modality Complementary Information and Cascaded 3D Lightweight CNNs. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 25–36

  33. Marcinkiewicz M, Nalepa J, Lorenzo PR, Dudzik W, Mrukwa G (2019) Segmenting Brain Tumors from MRI Using Cascaded Multi-modal U-Nets. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 13–24

  34. Mehta R, Arbel T (2019) 3D U-Net for brain tumour segmentation. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 254–266

  35. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber M, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Criminisi A (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024. https://doi.org/10.1109/TMI.2014.2377694

  36. Milletari F, Navab N, Ahmadi SA (2016) V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. CoRR arXiv:1606.04797

  37. Nuechterlein N, Mehta S (2019) 3d-ESPNet with Pyramidal Refinement for Volumetric Brain Tumor Image Segmentation. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 245–253

  38. Rezaei M, Yang H, Meinel C (2019) voxel-GAN: Adversarial Framework for Learning Imbalanced Brain Tumor Segmentation. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 321–333

  39. Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. CoRR arXiv:1505.04597

  40. Roy Choudhury A, Vanguri R, Jambawalikar SR, Kumar P (2019) Segmentation of Brain Tumors Using DeepLabv3+. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 154–167

  41. Samanta A, Saha A, Satapathy SC, Fernandes SL, Zhang YD (2020) Automated detection of diabetic retinopathy using convolutional neural networks on a small dataset. Pattern Recogn Lett 135:293–298. https://doi.org/10.1016/j.patrec.2020.04.026. http://www.sciencedirect.com/science/article/pii/S0167865520301483

  42. Sarker MMK, Rashwan HA, Akram F, Banu SF, Saleh A, Singh VK, Chowdhury FUH, Abdulwahab S, Romani S, Radeva P, Puig D (2018) SLSDeep: Skin Lesion Segmentation Based on Dilated Residual and Pyramid Pooling Networks. CoRR arXiv:1805.10241

  43. Sun L, Zhang S, Luo L (2019) Tumor segmentation and survival prediction in glioma with deep learning. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 83–93

  44. Sun Y, Gao K, Wu Z, Lei Z, Wei Y, Ma J, Yang X, Feng X, Zhao L, Phan TL, Shin J, Zhong T, Zhang Y, Yu L, Li C, Basnet R, Ahmad MO, Swamy MNS, Ma W, Dou Q, Bui TD, Noguera CB, Landman B, Gotlib IH, Humphreys KL, Shultz S, Li L, Niu S, Lin W, Jewells V, Li G, Shen D, Wang L (2020) Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge

  45. Tuan TA, Tuan TA, Bao PT (2019) Brain Tumor Segmentation Using Bit-plane and UNET. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 466–475

  46. Wang G, Li W, Ourselin S, Vercauteren T (2017) Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks. CoRR arXiv:1709.00382

  47. Wang G, Li W, Ourselin S, Vercauteren T (2019) Automatic brain tumor segmentation using convolutional neural networks with test-time augmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 11384 LNCS. Springer, pp 61–72. https://doi.org/10.1007/978-3-030-11726-9_6

  48. Wang P, Chen P, Yuan Y, Liu D, Huang Z, Hou X, Cottrell GW (2017) Understanding Convolution for Semantic Segmentation. CoRR arXiv:1702.08502

  49. Weninger L, Rippel O, Koppers S, Merhof D (2019) Segmentation of Brain Tumors and Patient Survival Prediction: Methods for the braTS 2018 Challenge. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 3–12

  50. Xie S, Sun C, Huang J, Tu Z, Murphy K (2017) Rethinking Spatiotemporal Feature Learning For Video Understanding. CoRR arXiv:1712.04851

  51. Xu Y, Gong M, Fu H, Tao D, Zhang K, Batmanghelich K (2019) Multi-scale Masked 3-D U-Net for Brain Tumor Segmentation. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 222–233

  52. Yang M, Yu K, Zhang C, Li Z, Yang K (2018) DenseASPP for Semantic Segmentation in Street Scenes. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 3684–3692

  53. Yu F, Koltun V (2016) Multi-scale Context Aggregation by Dilated Convolutions. coRR arXiv:1511.0

  54. Yu F, Koltun V, Funkhouser TA (2017) Dilated Residual Networks. CoRR arXiv:1705.09914

  55. Zhang J, Jin Y, Xu J, Xu X, Zhang Y (2018) MDU-Net: Multi-scale Densely Connected U-Net for biomedical image segmentation. CoRR arXiv:1812.00352

  56. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) UNet++: {A} Nested U-Net Architecture for Medical Image Segmentation. CoRR arXiv:1807.10165

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No.61672250 and the Hubei Provincial Development and Reform Commission Project in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Jin.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that there is no conflict of interest/competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, P., Jin, H., Qamar, S. et al. RD2A: densely connected residual networks using ASPP for brain tumor segmentation. Multimed Tools Appl 80, 27069–27094 (2021). https://doi.org/10.1007/s11042-021-10915-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10915-y

Keywords

Navigation