Skip to main content

Advertisement

Log in

Latency minimization model towards high efficiency edge-IoT service provisioning in horizontal edge federation

  • 1175: IoT Multimedia Applications and Services
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Edge computing plays a critical role in IoT as it potentially minimized the computation tasks response latency demanded by time-critical IoT applications. The growth of IoT users with high demanded computation power as well as ultra-low latency tasks may cause the performance degradation. One way to minimize the end-to-end (E2E) latency is to form horizontal edge federation (HEF) so that the computation resources can be shared with each participating edge node. Achieving ultra-low latency in HEF-IoT ecosystem involves setting two factor: resource allocation and task dispatching. This two factor interact with each other yet feasible solutions must provide satisfactory service level to meet latency constraints demanded by target applications. In this paper, we formulate it as E2E latency minimization problem and proposed a two-phase iterative (TPI) approach. The TPI method alternately determines optimal task dispatching and computation resource allocation. We exploit bin packing problem and, genetic algorithm (GA) to determine the edge nodes, and the required computation resources. The simulation results show that by using TPI approach, we can achieve more throughput, minimum E2E latency and optimum number of required edge nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aburukba RO, AliKarrar M, Landolsi T, El-Fakih K (2020) Scheduling internet of things requests to minimize latency in hybrid fog-cloud computing. Future Generation Computer Systems 111:539–551. https://doi.org/10.1016/j.future.2019.09.039. http://www.sciencedirect.com/science/article/pii/S0167739X18303327

    Article  Google Scholar 

  2. Aryal RG, Altmann J (2018) Dynamic application deployment in federations of clouds and edge resources using a multiobjective optimization ai algorithm. In: 2018 Third international conference on fog and mobile edge computing (FMEC), pp 147–154

  3. Ashwini K, Amutha R (2018) Fast and secured cloud assisted recovery scheme for compressively sensed signals using new chaotic system. Multimed Tools Appl 77. https://doi.org/10.1007/s11042-018-6112-4

  4. Atapattu S, Weeraddana C, Ding M, Inaltekin H, Evans J (2020) Latency minimization with optimum workload distribution and power control for fog computing

  5. Baecker O, Miche M, Bohnert T (2010) Vehicle-to-business communication: The example of claims assistance in motor insurance. http://www.alexandria.unisg.ch/Publikationen/57557

  6. Baghban H, Huang CY, Hsu C (2020) Resource provisioning towards opex optimization in horizontal edge federation. Computer Communications 158:39–50. https://doi.org/10.1016/j.comcom.2020.04.009. http://www.sciencedirect.com/science/article/pii/S0140366419319796

    Article  Google Scholar 

  7. Baktir AC, Sonmez C, Ersoy C, Ozgovde A, Varghese B (2019) Addressing the challenges in federating edge resources, chap. 2. Wiley, Hoboken, pp 25–49. https://doi.org/10.1002/9781119525080.ch2. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119525080.ch2

    Google Scholar 

  8. Campolo C, Molinaro A, Iera A, Fontes RR, Rothenberg CE (2018) Towards 5g network slicing for the v2x ecosystem. In: 2018 4th IEEE conference on network softwarization and workshops (NetSoft), pp 400–405

  9. Cao X, Tang G, Guo D, Li Y, Zhang W (2020) Edge federation: Towards an integrated service provisioning model. IEEE/ACM Trans Networking: 1–14

  10. Choi J, Ahn S (2019) Scalable service placement in the fog computing environment for the iot-based smart city. J Inf Process Sys 15:440–448. https://doi.org/10.3745/JIPS.03.0113

    Article  Google Scholar 

  11. Coffman EG, Garey MR, Johnson DS (1984) Approximation algorithms for bin-packing — an updated survey. Springer, Vienna, pp 49–106. https://doi.org/10.1007/978-3-7091-4338-4_3

    MATH  Google Scholar 

  12. Dinh HT, Lee C, Niyato D, Wang P (2013) A survey of mobile cloud computing: architecture, applications, and approaches. Wireless Commun Mobile Comput 13(18):1587–1611. https://doi.org/10.1002/wcm.1203. https://onlinelibrary.wiley.com/doi/abs/10.1002/wcm.1203

    Article  Google Scholar 

  13. Gonçalves M, Cunha M, Mendonca̧ NC, Sampaio A (2015) Performance inference: A novel approach for planning the capacity of iaas cloud applications. In: 2015 IEEE 8th international conference on cloud computing, pp 813–820

  14. Gurobi Optimization LLC (2019) Gurobi optimizer reference manual. http://www.gurobi.com

  15. Hoon J, Kumar S, Sapalo SC, Hyuk P (2019) Emerging technologies for sustainable smart city network security: Issues, challenges, and countermeasures. J Inf Process Sys 15(4):765–784

    Google Scholar 

  16. Jiang Y, Perng C, Li T, Chang RN (2013) Cloud analytics for capacity planning and instant vm provisioning. IEEE Trans Netw Serv Manag 10 (3):312–325

    Article  Google Scholar 

  17. Kharel J, Shin S (2018) Multimedia service utilizing hierarchical fog computing for vehicular networks. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-018-6530-3

  18. Liu J, Wan J, Jia D, Zeng B, Li D, Hsu C, Chen H (2017) High-efficiency urban traffic management in context-aware computing and 5g communication. IEEE Commun Mag 55(1):34–40. https://doi.org/10.1109/MCOM.2017.1600371CM

    Article  Google Scholar 

  19. Liu L, Xu J, Yu H, Li L, Qiao C (2016) Vmsa: A performance preserving online vm splitting and placement algorithm in dynamic cloud environments. J Supercomput 72(8):3169–3193. https://doi.org/10.1007/s11227-015-1590-x

    Article  Google Scholar 

  20. Liu M, Cheng L, Qian K, Wang J, Wang J, Liu Y (2020) Indoor acoustic localization: a survey. Human-centric Comput Inf Sci 10(1):2. https://doi.org/10.1186/s13673-019-0207-4

    Article  Google Scholar 

  21. Liu Y, Wang S, Zhao Q, Du S, Zhou A, Ma X, Yang F (2020) Dependency-aware task scheduling in vehicular edge computing. IEEE Internet of Things Journal 7(6):4961–4971

    Article  Google Scholar 

  22. Ma X, Zhang S, Li W, Zhang P, Lin C, Shen X (2017) Cost-efficient workload scheduling in cloud assisted mobile edge computing. In: 2017 IEEE/ACM 25th international symposium on quality of service (IWQoS), pp 1–10

  23. Mitchell M (1998) An introduction to genetic algorithms. MIT Press, Cambridge

    Book  Google Scholar 

  24. Morrison DR, Jacobson SH, Sauppe JJ, Sewell EC (2016) Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning. Discrete Optimization 19:79–102. https://doi.org/10.1016/j.disopt.2016.01.005. http://www.sciencedirect.com/science/article/pii/S1572528616000062

    Article  MathSciNet  Google Scholar 

  25. Mu S, Zhong Z, Zhao D, Ni M (2019) Joint job partitioning and collaborative computation offloading for internet of things. IEEE Internet of Things Journal 6(1):1046–1059

    Article  Google Scholar 

  26. Nimkar A, Ghosh S (2013) Towards full network virtualization in horizontal iaas federation: Security issues. Journal of Cloud Computing: Advances, Systems and Applications 2:19. https://doi.org/10.1186/2192-113X-2-19

    Article  Google Scholar 

  27. Park S, Simeone O, Shamai S (2016) Joint cloud and edge processing for latency minimization in fog radio access networks. In: 2016 IEEE 17th International workshop on signal processing advances in wireless communications (SPAWC), pp 1–5

  28. Rahman GMS, Peng M, Zhang K, Chen S (2018) Radio resource allocation for achieving ultra-low latency in fog radio access networks. IEEE Access 6:17442–17454

    Article  Google Scholar 

  29. Rathore S, Park JH (2018) Semi-supervised learning based distributed attack detection framework for IoT. Appl Soft Comput 72:79–89. https://doi.org/10.1016/j.asoc.2018.05.049. http://www.sciencedirect.com/science/article/pii/S1568494618303508

    Article  Google Scholar 

  30. Ross SM (2019) Introduction to probability models (Twelfth Edition). In: Ross SM (ed). https://doi.org/10.1016/B978-0-12-814346-9.00013-5. http://www.sciencedirect.com/science/article/pii/B9780128143469000135. Academic Press, pp 507–589

  31. Stavrinides G, Karatza H (2018) A hybrid approach to scheduling real-time iot workflows in fog and cloud environments. Multimed Tools Appl 78. https://doi.org/10.1007/s11042-018-7051-9

  32. Tai L, Li L, Du J (2018) Multimedia based intelligent network big data optimization model. Multimed Tools Appl: 78. https://doi.org/10.1007/s11042-018-6391-9

  33. Yang B, Chai WK, Xu Z, Katsaros KV, Pavlou G (2018) Cost-efficient nfv-enabled mobile edge-cloud for low latency mobile applications. IEEE Trans Netw Serv Manag 15(1):475–488

    Article  Google Scholar 

  34. Yin C, Zhou B, Yin Z, Wang J (2019) Local privacy protection classification based on human-centric computing. Human-centric Computing and Information Sciences 9(1):33. https://doi.org/10.1186/s13673-019-0195-4

    Article  Google Scholar 

  35. Zhu C, Pastor G, Xiao Y, Li Y, Ylae-Jaeaeski A (2018) Fog following me: Latency and quality balanced task allocation in vehicular fog computing. In: 2018 15th Annual IEEE international conference on sensing, communication, and networking (SECON), pp 1–9

Download references

Acknowledgements

This work was partially supported by Ministry of Education, Taiwan, under the project: Trusted Intelligent Edge/Fog computing Technology RSC (Grant No. 107RSA0021), the National Natural Science Foundation of China (Grant No. 61872084), and Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology (No. 2020B1212030010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Hsien Hsu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghban, H., Huang, CY. & Hsu, CH. Latency minimization model towards high efficiency edge-IoT service provisioning in horizontal edge federation. Multimed Tools Appl 81, 26803–26820 (2022). https://doi.org/10.1007/s11042-021-11009-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11009-5

Keywords

Navigation