Skip to main content
Log in

Survey of denoising, segmentation and classification of magnetic resonance imaging for prostate cancer

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Prostate cancer (PCa) has become the second most dreadful cancer in men after lung cancer. Traditional approaches used for treatment of PCa were manual, time consuming and prone to subjective errors. Thus, there is a need for a Computer aided diagnosis system (CADs) consisting of denoising, segmentation, and classification approaches for diagnosis of PCa. CADs may act as a second opinion for the medical experts and save their precious time used in manual analysis. Magnetic resonance imaging (MRI) is the commonly used modality, as it produces detailed and fine contrast images of internal organs for diagnosis of PCa, but it may contain a certain amount of rician and gaussian noise which is necessary to be denoising before segmentation and classification. Denoising offers several challenges such as suppressing of significance image details leading in inaccurate segmentation and classification for prediction of abnormality. Thus, improved denoising, segmentation, and classification approaches can overcome the challenges by analyzing the pitfalls in the state of the art. This paper presents the experimental analysis state of the art denoising and segmentation approaches to analyse their performance based on the values of Peak signal to noise ratio (PSNR), Mean squared error (MSE), Structured similarity index (SSIM), dice metric, area overlap and accuracy. Based on the experimental analysis it was analysed that anisotropic filter outperforms other filters for gaussian noise with PSNR of 28.29, MSE of 96.22 and SSIM of 0.64. Also, for the rician noise anisotropic filter outperforms others with PSNR of 28.06, MSE of 101.52 and SSIM of 0.01. Similarly, for the combined gaussian and rician noise, anisotropic filter outperform others with PSNR of 28.34, MSE of 95.13 and SSIM of 0.652. Further, the analysis of segmentation approaches such as contour and shape-based, region/atlas based, thresholding based, clustering based and deep learning based was performed. Amongst these approaches deep learning based segmentation was found to outperform with dice metric of 0.89 and area overlap of 0.80. Also, CNN based classification outperformed machine learning based Support vector machine (SVM), K nearest neighbour (K-NN) and Random forest (RF) with 94.55% sensitivity, 93.34% specificity, 95.45% accuracy. Finally, the paper discusses challenges and future scope based on analysis in the concerned field for diagnosis of PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. https://i2cvb.github.io/#prostate-data

  2. https://wiki.cancerimagingarchive.net/display/Public/PROSTATE-MRI

References

  1. Anonymous (2013) Automatic Diagnosis of Prostate cancer using Random Forest Classifier. https://www.cs.ubc.ca/~nando/540-2013/projects/p55.pdf

  2. Abraham B, Nair MS (2018 Jan 1) Computer-aided diagnosis of clinically significant prostate cancer from MRI images using sparse autoencoder and random forest classifier. Biocybernetics and Biomedical Engineering 38(3):733–744

    Article  Google Scholar 

  3. Abraham B, Nair MS (2018 Nov 1) Computer-aided classification of prostate cancer grade groups from MRI images using texture features and stacked sparse autoencoder. Comput Med Imaging Graph 69:60–68

    Article  Google Scholar 

  4. Ahmed HU, Bosaily AE, Brown LC, Gabe R, Kaplan R, Parmar MK, Collaco-Moraes Y, Ward K, Hindley RG, Freeman A, Kirkham AP (2017 Feb 25) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389(10071):815–822

    Article  Google Scholar 

  5. Aja-Fernandez S, Alberola-Lopez C, Westin CF (2008) Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach. IEEE trans image process 17(8):1383–1398. https://doi.org/10.1109/TIP.2008.925382

  6. Ali HM (2018) MRI medical image denoising by fundamental filters. In High-Resolution Neuroimaging-Basic Physical Principles and Clinical Applications 2018 Mar 14. Intech Open.

  7. Alta Klinik: Multiparametric MRI of the Prostate (2019) Available at: https://www.altaklinik.com/prostate/mri-prostata/ [accessed on 28 April 2019]

  8. Álvarez C, Martínez F, Romero E (2015) An automatic multi-atlas prostate segmentation in MRI using a multiscale representation and a label fusion strategy. In10th international symposium on medical information processing and analysis 2015 Jan 28 (Vol. 9287, p. 92870D). International Society for Optics and Photonics

  9. Andersen AH (1995) On the Rician distribution of noisy MRI data. Magn Reson Med 34(6):910–914. https://doi.org/10.1002/mrm.1910360222

    Article  Google Scholar 

  10. Anon (2019) [Online]. Available at: https://www.pcf.org/wp-content/uploads/2017/10/AN-INTRODUCTION_PROSTATE_CANCER_ GUIDE-2014.pdf [accessed on 21 Apr. 2019]

  11. Anon (2019) [ebook]. Available at: https://uroweb.org/wp-content/uploads/EAU_WhitePaper_Pca_final.pdf [accessed on 21 Apr. 2019].

  12. Applications and Clinical Benefits of MR Imaging | MRI Scan | Imaginis - The Women's Health & Wellness Resource Network. Imaginis.com (2019). [online] Available at: http://www.imaginis.com/mri-scan/applications-and-clinical-benefits-of-mr-imaging [Accessed on 30 April 2019]

  13. Barbu A (2009) Training an active random field for real-time image denoising. IEEE Trans Image Process 18(11):2451–2462. https://doi.org/10.1109/TIP.2009.2028254

    Article  MathSciNet  MATH  Google Scholar 

  14. Bhadauria HS, Dewal ML (2013 Jul 1) Medical image denoising using adaptive fusion of curvelet transform and total variation. Computers & Electrical Engineering 39(5):1451–1460

    Article  Google Scholar 

  15. Biswas R, Purkayastha D, Roy S (2018) Denoising of MRI images using Curvelet transform. InAdvances in systems, control and automation 2018 (pp. 575-583). Springer, Singapore.

  16. Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. IEEE Comput Soc Conf Comput Vision Pattern Recogn (CVPR) 2:60–65. https://doi.org/10.1109/CVPR.2005.38

    Article  MATH  Google Scholar 

  17. Burrus CS, Gopinath RA, Guo H, Odegard JE, Selesnick IW (1998) Introduction to wavelets and wavelet transforms: a primer.(Vol. 1). Prentice hall, New Jersey

  18. Cammoun D, Davis KA, Hendee WR (1985 Dec) Clinical applications of magnetic resonance imaging—current status. West J Med 143(6):793–803

    Google Scholar 

  19. Prostate Cancer (2011) PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med 52(1):81–89

    Article  Google Scholar 

  20. Candes EJ, Donoho DL (1999) Curvelets. Available from: http://www.stat.stanford.Edu/donoho/reports/1999/curvelets.pdf. Accessed on 15 September 2016

  21. Chandra SS, Dowling JA, Shen KK, Raniga P, Pluim JP, Greer PB, Salvado O, Fripp J (2012 Oct) Patient specific prostate segmentation in 3-D magnetic resonance images. IEEE Trans Med Imaging 31(10):1955–1964

    Article  Google Scholar 

  22. Chandra SS, Dowling JA, Shen KK, Raniga P, Pluim JP, Greer PB, Salvado O, Fripp J (2012 Oct) Patient specific prostate segmentation in 3-D magnetic resonance images. IEEE Trans Med Imaging 31(10):1955–1964

    Article  Google Scholar 

  23. Chen J, Benesty J, Huang Y, Doclo S (2006 Jun 19) New insights into the noise reduction wiener filter. IEEE Trans Audio Speech Lang Process 14(4):1218–1234

    Article  Google Scholar 

  24. Chilali O, Puech P, Lakroum S, Diaf M, Mordon S, Betrouni N (2016 Dec 1) Gland and zonal segmentation of prostate on T2W MR images. J Digit Imaging 29(6):730–736

    Article  Google Scholar 

  25. Choyke P, Turkbey B, Pinto P, Merino M, Wood B. (2016). Data From PROSTATE-MRI. The Cancer Imaging Archive.

  26. Clark T, Zhang J, Baig S, Wong A, Haider MA, Khalvati F (2017 Oct) Fully automated segmentation of prostate whole gland and transition zone in diffusion-weighted MRI using convolutional neural networks. Journal of Medical Imaging 4(4):041307

    Article  Google Scholar 

  27. Ct Prostate Cancer Beach Towel for Sale by Medical Body Scans [Online]. Fine Art America (2019). Available at: https://fineartamerica.com/featured/ct-prostate-cancer-medical-body-scans.html?product=beach-towel [accessed on 27 April. 2019]

  28. Das CJ, Razik A, Sharma S (2018 Jul) Positron emission tomography in prostate cancer: An update on state of the art. Indian journal of urology: IJU: journal of the Urological Society of India 34(3):172–179

    Article  Google Scholar 

  29. Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolu-tion image representation. IEEE Trans Image Process 14(12):2091–2106. https://doi.org/10.1109/TIP.2005.859376

    Article  Google Scholar 

  30. Dowling JA, Fripp J, Chandra S, Pluim JP, Lambert J, Parker J, Denham J, Greer PB, Salvado O (2011) Fast automatic multi-atlas segmentation of the prostate from 3D MR images. InInternational workshop on prostate Cancer imaging 2011 Sep 22 (pp. 10-21). Springer, Berlin, Heidelberg

  31. Fehr D, Veeraraghavan H, Wibmer A, Gondo T, Matsumoto K, Vargas HA, Sala E, Hricak H, Deasy JO (2015 Nov 17) Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc Natl Acad Sci 112(46):E6265–E6273

    Article  Google Scholar 

  32. Flores-Tapia D, Thomas G, Venugopal N, McCurdy B, Pistorius S (2008) Semi automatic MRI prostate segmentation based on wavelet multiscale products. In2008 30th annual international conference of the IEEE engineering in medicine and biology society 2008 Aug 20 (pp. 3020-3023). IEEE.

  33. Francesco M, Schenone A (1999) A fuzzy clustering based segmentation system as support to diagnosis in medical imaging. Artif Intell Med 16(2):129–147

    Article  Google Scholar 

  34. Gao Y, Tannenbaum A (2011) Combining atlas and active contour for automatic 3D medical image segmentation. In2011 IEEE international symposium on biomedical imaging: from Nano to macro 2011 mar 30 (pp. 1401-1404). IEEE

  35. Gao Y, Tannenbaum A (2011) Combining atlas and active contour for automatic 3D medical image segmentation. In2011 IEEE international symposium on biomedical imaging: from Nano to macro 2011 mar 30 (pp. 1401-1404). IEEE.

  36. Garg G, Juneja M (2016) Anatomical visions of prostate Cancer in different modalities. Indian J Sci Technol 9:44

    Article  Google Scholar 

  37. Garg G, Juneja M (2018) A survey of prostate segmentation techniques in different imaging modalities. Current Medical Imaging Reviews 14(1):19–46

    Article  Google Scholar 

  38. Garg G, Juneja M (2018) A survey of denoising techniques for multi-parametric prostate MRI. Multimed Tools Appl:1–34

  39. Ghose S, Oliver A, Martí R, Lladó X, Vilanova JC, Freixenet J, Mitra J, Sidibé D, Meriaudeau F (2012) A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images. Comp Methods Prog Biomed 108(1):262–287

    Article  Google Scholar 

  40. Gillies RJ, Kinahan PE, Hricak H (2015 Nov 18) Radiomics: images are more than pictures, they are data. Radiology. 278(2):563–577

    Article  Google Scholar 

  41. Golshan HM, Hasanzadeh RP, Yousefzadeh SC (2013 Sep 1) An MRI denoising method using image data redundancy and local SNR estimation. Magn Reson Imaging 31(7):1206–1217

    Article  Google Scholar 

  42. Gonzalez RC, Woods RE (2002) Thresholding, digital image processing. Pearson Educ 59:595–611

    Google Scholar 

  43. Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing using MATLAB. Pearson Prentice Hall, Upper Saddle River, New Jersey

  44. Gopinath N (2012 Sep) Extraction of cancer cells from MRI prostate image using MATLAB. International Journal of Engineering Science and Innovative Technology (IJESIT) 1(1):27–35

    Google Scholar 

  45. Guo Y, Gao Y, Shao Y, Price T, Oto A, Shen D (2014 Jul) Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning. Med Phys 1:41(7)

  46. Guo Y, Ruan S, Walker P, Feng Y (2014) Prostate cancer segmentation from multiparametric MRI based on fuzzy Bayesian model. In2014 IEEE 11th international symposium on biomedical imaging (ISBI) 2014 Apr 29 (pp. 866-869). IEEE.

  47. Guo Y, Gao Y, Shen D (2015 Dec 11) Deformable MR prostate segmentation via deep feature learning and sparse patch matching. IEEE Trans Med Imaging 35(4):1077–1089

    Article  Google Scholar 

  48. Haddad RA, Akansu AN (1991) A class and image processing. IEEE Trans Fast Gaussian Binomial Filters Speech Signal Process 39(3):723–727. https://doi.org/10.1109/78.80892

    Article  Google Scholar 

  49. Hassanzadeh T, Hamey LG, Ho-Shon K (2019) Convolutional neural networks for prostate magnetic resonance image segmentation. IEEE Access 7:36748–36760

    Article  Google Scholar 

  50. He B, Xiao D, Hu Q, Jia F (2018) Automatic magnetic resonance image prostate segmentation based on adaptive feature learning probability boosting tree initialization and CNN-ASM refinement. IEEE Access. 6:2005–2015

    Article  Google Scholar 

  51. Hossain MS, Paplinski AP, Betts JM (2018) Residual semantic segmentation of the prostate from magnetic resonance images. InInternational conference on neural information processing 2018 Dec 13 (pp. 510-521). Springer, Cham.

  52. Huang T, Yang GJ, Tang G (1979) A fast two-dimensional median filtering algorithm. IEEE Trans Acoust Speech Signal Process 27(1):13–18. https://doi.org/10.1109/TASSP.1979.1163188

    Article  Google Scholar 

  53. Huynh-Thu Q, Ghanbari M (2008) Scope of validity of PSNR in image/video quality assessment. Electron Lett 44(13):800–801

    Article  Google Scholar 

  54. Imielinska C, Udupa J, Metaxas D, Jin Y, Angelini E, Chen T, Zhuge Y (2004) Hybrid Segmentation Methods. Principles and Practice for Segmentation, Registration, and Image Analysis, pp. 351–388

  55. Isa IS, Sulaiman SN, Mustapha M, Darus S (2015 Jan 1) Evaluating denoising performances of fundamental filters for t2-weighted MRI images. Procedia Computer Science 60:760–768

    Article  Google Scholar 

  56. Ishioka J, Matsuoka Y, Uehara S, Yasuda Y, Kijima T, Yoshida S, Yokoyama M, Saito K, Kihara K, Numao N, Kimura T (2018 Sep) Computer-aided diagnosis of prostate cancer on magnetic resonance imaging using a convolutional neural network algorithm. BJU Int 122(3):411–417

    Article  Google Scholar 

  57. Judith Marcin M and Lam P (2018) MRI Scans: Definition uses and procedure, Medical News Today [online]. Available at: https://www.medicalnewstoday.com/articles/146309.php [Accessed on 28 April 2019].

  58. Karimi D, Samei G, Kesch C, Nir G, Salcudean SE (2018 Aug 1) Prostate segmentation in MRI using a convolutional neural network architecture and training strategy based on statistical shape models. Int J Comput Assist Radiol Surg 13(8):1211–1219

    Article  Google Scholar 

  59. Kaur R, Juneja M, Mandal AK (2018) Computer-aided diagnosis of renal lesions in CT images: a comprehensive survey and future prospects. Computers & Electrical Engineering. 2018 Aug 22.

  60. Klosowski J, Frahm J (2017 Mar) Image denoising for real-time MRI. Magn Reson Med 77(3):1340–1352

    Article  Google Scholar 

  61. LeCun Y, Bengio Y (2015 May) Hinton G. Deep learning nature 521(7553):436–444

    Google Scholar 

  62. Lehaire J, Flamary R, Rouvière O, Lartizien C (2014) Computer-aided diagnostic system for prostate cancer detection and characterization combining learned dictionaries and supervised classification. In2014 IEEE international conference on image processing (ICIP) 2014 Oct 27 (pp. 2251-2255). IEEE.

  63. Lehmann EL, Casella G (2006). Theory of point estimation. Springer Science & Business Media.

  64. Lemaitre G, Mart R, Freixenet J, Vilanova JC, Walker PM, Meriaudeau F (2015) Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a review. Comput Biol Med 60:8–31

    Article  Google Scholar 

  65. Lemaitre G, Massich J, Martí R, Freixenet J, Vilanova JC, Walker PM, Sidibé D, Mériaudeau F (2015) A boosting approach for prostate cancer detection using multi-parametric MRI. InTwelfth international conference on quality control by artificial vision 2015 2015 Apr 30 (Vol. 9534, p. 95340A). International Society for Optics and Photonics.

  66. Leventon ME, Grimson WE, Faugeras O (2002) Statistical shape influence in geodesic active contours. In5th IEEE EMBS international Summer School on biomedical imaging. 2002 Jun 15 (pp. 8-pp). IEEE

  67. Li J, Weng Z, Xu H, Zhang Z, Miao H, Chen W, Liu Z, Zhang X, Wang M, Xu X, Ye Q (2018 Jan 1) Support vector machines (SVM) classification of prostate cancer Gleason score in central gland using multiparametric magnetic resonance images: a cross-validated study. Eur J Radiol 98:61–67

    Article  Google Scholar 

  68. Lim JS (1990) Two-dimensional signal and image processing. Prentice hall, Englewood Cli s, NJ, pp. 710

  69. Liu Y, An X (2017) A classification model for the prostate cancer based on deep learning. In2017 10th international congress on image and signal processing, BioMedical engineering and informatics (CISP-BMEI) 2017 Oct 14 (pp. 1-6). IEEE.

  70. Liu X, Langer DL, Haider MA, Yang Y, Wernick MN, Yetik IS (2009 Jun) Prostate cancer segmentation with simultaneous estimation of Markov random field parameters and class. IEEE Trans Med Imaging 28(6):906–915

    Article  Google Scholar 

  71. Liu P, Wang S, Turkbey B, Grant K, Pinto P, Choyke P, Wood BJ, Summers RM (2013) A prostate cancer computer-aided diagnosis system using multimodal magnetic resonance imaging and targeted biopsy labels. InMedical imaging 2013: computer-aided diagnosis 2013 Feb 26 (Vol. 8670, p. 86701G). International Society for Optics and Photonics

  72. Liu L, Yang H, Fan J, Liu RW, Duan Y (2019) Rician nowase and intensity nonuniformity correction (NNC) model for MRI data. Biomedical Signal Processing and Control. 49:506–519

    Article  Google Scholar 

  73. Luisier F, Blu T, Wolfe PJ (2012) A CURE for noisy magnetic resonance images: chi-square unbiased risk estimation. IEEE Trans Image Process 21(8):3454–3466. https://doi.org/10.1109/TIP.2012.2191565

    Article  MathSciNet  MATH  Google Scholar 

  74. Macovski A (1996) Noise in MRI. Magn Reson Med 36(3):494–497. https://doi.org/10.1002/mrm.1910360327

    Article  Google Scholar 

  75. Malmberg F, Strand R, Kullberg J, Nordenskjöld R, Bengtsson E (2012 Oct) Smart paint a new interactive segmentation method applied to MR prostate segmentation. MICCAI Grand Challenge: Prostate MR Image Segmentation 2012

  76. Manjón JV, Coupé P, Buades A (2015 May 1) MRI noise estimation and denoising using non-local PCA. Med Image Anal 22(1):35–47

    Article  Google Scholar 

  77. Martin S, Troccaz J, Daanen V (2010 Apr) Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model. Med Phys 37(4):1579–1590

    Article  Google Scholar 

  78. Mohammadi M, Nabavi S (n.d.) Improvement in auto-contouring approaches using region growing segmentation for prostate cancer radiotherapy

  79. Mohan J, Krishnaveni V, Guo Y (2013 Nov 1) MRI denoising using nonlocal neutrosophic set approach of wiener filtering. Biomedical Signal Processing and Control. 8(6):779–791

    Article  Google Scholar 

  80. Nam D, Barrack RL, Potter HG (2014) What are the advantages and disadvantages of imaging modalities to diagnose wear-related corrosion problems? Clinical Orthopaedics and Related Research®. 2014 Dec 1;472(12):3665–73

  81. Niaf E, Rouvière O, Mège-Lechevallier F, Bratan F, Lartizien C (2012 May 29) Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI. Phys Med Biol 57(12):3833–3851

    Article  Google Scholar 

  82. Ozer S, Langer DL, Liu X, Haider MA, Van der Kwast TH, Evans AJ, Yang Y, Wernick MN, Yetik IS (2010 Apr) Supervised and unsupervised methods for prostate cancer segmentation with multispectral MRI. Med Phys 37(4):1873–1883

    Article  Google Scholar 

  83. Parfait S, Walker PM, Créhange G, Tizon X, Miteran J (2012 Sep 1) Classification of prostate magnetic resonance spectra using support vector machine. Biomedical Signal Processing and Control. 7(5):499–508

    Article  Google Scholar 

  84. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639. https://doi.org/10.1109/34.56205

    Article  Google Scholar 

  85. Prostate Cancer Is the Leading Cancer in India: Prostate Cancer Treatment in India Cytecare (2019) [Online]. Available at: https://www.cytecare.com/blog/prostate-cancer-is-the-leading-cancer-in-india [accessed on 27 April 2019].

  86. Prostate Cancer: India Against Cancer, (2019) [Online]. Available at: http://cancerindia.org.in/prostate-cancer [accessed on 27 April 2019]

  87. Rajan J, Veraart J, Van Audekerke J, Verhoye M, Sijbers J (2012 Dec 1) Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images. Magn Reson Imaging 30(10):1512–1518

    Article  Google Scholar 

  88. Reda I, Shalaby A, Elmogy M, Elfotouh AA, Khalifa F, El-Ghar MA, Hosseini-Asl E, Gimel'farb G, Werghi N, El-Baz A (2017 Feb 1) A comprehensive non-invasive framework for diagnosing prostate cancer. Comput Biol Med 81:148–158

    Article  Google Scholar 

  89. Reda I, Khalil A, Elmogy M, Abou El-Fetouh A, Shalaby A, Abou El-Ghar M, Elmaghraby A, Ghazal M, El-Baz A (2018 May 25) Deep learning role in early diagnosis of prostate cancer. Technology in cancer research & treatment 17:1533034618775530

    Article  Google Scholar 

  90. Redpath TW (1998) Signal-to-noise ratio in MRI. Br J Radiol 71(847):704–707. 10.1259 /bjr.71.847.9771379

  91. Rohlfing T, Brandt R, Menzel R, Russakoff DB, Maurer CR (2005) Quo vadis, atlas-based segmentation?. InHandbook of biomedical image analysis 2005 (pp. 435-486). Springer, Boston, MA.

  92. Romberg JK, Choi H, Baraniuk RG (2001) Bayesian tree-structured image modeling using wavelet domain hidden Markov models. IEEE Trans Image Process 10(7):1056–1068. https://doi.org/10.1109/83.931100

    Article  Google Scholar 

  93. Roth S, Black MJ (2005) Fields of experts: a framework for learning image priors. IEEE Conf Comput Vision Pattern Recogn (CVPR) 2:860–867. https://doi.org/10.1109/CVPR.2005.160

    Article  Google Scholar 

  94. Rundo L, Militello C, Russo G, Garufi A, Vitabile S, Gilardi MC, Mauri G (2017 Jun) Automated prostate gland segmentation based on an unsupervised fuzzy C-means clustering technique using multispectral T1w and T2w MR imaging. Information. 8(2):49

    Article  Google Scholar 

  95. Ryan O (2019) Hare, Researchers to investigate screening for prostate cancer using MRI (April 2018) [online]. Available at: https://www.imperial.ac.uk/news/185591/researchers-investigate-screening-prostate-cancer-using/ [Accessed on 28 April 2019]

  96. Samiee M, Thomas G, Fazel-Rezai R (2006) Semi-automatic prostate segmentation of MR images based on flow orientation. In2006 IEEE international symposium on signal processing and information technology 2006 Aug (pp. 203-207). IEEE.

  97. Sarkar S, Das S (2016) A review of imaging methods for prostate cancer detection: supplementary issue: image and video acquisition and processing for clinical applications. Biomedical engineering and computational biology. 2016 Jan;7: BECB-S34255.Table 1, A summary of clinical usage, advantages, and disadvantages across imaging modalities for pca imaging ;p.4

  98. Seetha J, Raja SS (2016) Denoising of MRI images using filtering methods. In2016 international conference on wireless communications, signal processing and networking (WiSPNET) 2016 mar 23 (pp. 765-769). IEEE.

  99. Shah V, Turkbey B, Mani H, Pang Y, Pohida T, Merino MJ, Pinto PA, Choyke PL, Bernardo M (2012) Decision support system for localizing prostate cancer based on multiparametric magnetic resonance imaging. Medical physics. 2012 Jul 1;39(7Part1):4093–103

  100. Sharma KK, Gurjar D, Jyotyana M, Kumari V (2019) Denoising of brain MRI images using a hybrid filter method of Sylvester-Lyapunov equation and non local means. InSmart innovations in communication and computational sciences 2019 (pp. 495-505). Springer, Singapore.

  101. Smith CP, Czarniecki M, Mehralivand S, Stoyanova R, Choyke PL, Harmon S, Turkbey B (2018 Jun) Radiomics and radiogenomics of prostate cancer. Abdominal Radiology 20:1–9

    Google Scholar 

  102. Smith-Bindman R (2010 Jul 1) Is computed tomography safe. N Engl J Med 363(1):1–4

    Article  Google Scholar 

  103. Subudhi BN, Thangaraj V, Sankaralingam E, Ghosh A (2016 Nov 1) Tumor or abnormality identification from magnetic resonance images using statistical region fusion based segmentation. Magn Reson Imaging 34(9):1292–1304

    Article  Google Scholar 

  104. Sudeep PV, Palanisamy P, Kesavadas C, Rajan J (2015 Jul 1) Nonlocal linear minimum mean square error methods for denoising MRI. Biomedical Signal Processing and Control. 20:125–134

    Article  Google Scholar 

  105. Tian Z, Liu L, Fei B (2015) A supervoxel-based segmentation method for prostate MR images. InMedical imaging 2015: image processing 2015 mar 20 (Vol. 9413, p. 941318). International Society for Optics and Photonics

  106. Tian Z, Liu L, Zhang Z, Fei B (2016 Mar) Superpixel-based segmentation for 3D prostate MR images. IEEE Trans Med Imaging 35(3):791–801

    Article  Google Scholar 

  107. Tian Z, Liu L, Zhang Z, Fei B (2018 Jan) PSNet: prostate segmentation on MRI based on a convolutional neural network. Journal of Medical Imaging. 5(2):021208

    Article  Google Scholar 

  108. To MN, Vu DQ, Turkbey B, Choyke PL, Kwak JT (2018 Nov 1) Deep dense multi-path neural network for prostate segmentation in magnetic resonance imaging. Int J Comput Assist Radiol Surg 13(11):1687–1696

    Article  Google Scholar 

  109. Trigui R, Mitéran J, Walker PM, Sellami L, Hamida AB (2017 Jan 1) Automatic classification and localization of prostate cancer using multi-parametric MRI/MRS. Biomedical Signal Processing and Control 31:189–198

    Article  Google Scholar 

  110. Tustison NJ, Gee JC (2009) Introducing dice, Jaccard, and other label overlap measures to ITK. Insight J 2009 Jul;2.

  111. Ucla technology development group (2019) University of californiaedu. [Online]. Available from: https://techtransfer.universityofcalifornia.edu/NCD/29986.html [Accessed 30 April 2019]

  112. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  113. Wang X, Yang W, Weinreb J, Han J, Li Q, Kong X, Yan Y, Ke Z, Luo B, Liu T, Wang L (2017 Nov 13) Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning. Sci Rep 7(1):15415

    Article  Google Scholar 

  114. Weiss Y, Freeman WT (2007) What makes a good model of natural images?. In: IEEE conference on computer vision and pattern recognition (CVPR) (pp 1-8). Doi: https://doi.org/10.1109/CVPR.2007.383092

  115. Yang X, Liu C, Wang Z, Yang J, Le Min H, Wang L, Cheng KT (2017 Dec 1) Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI. Med Image Anal 42:212–227

    Article  Google Scholar 

  116. Yuan J (2018 Nov 1) An improved variational model for denoising magnetic resonance images. Computers & Mathematics with Applications 76(9):2212–2222

    Article  MathSciNet  MATH  Google Scholar 

  117. Yuan Y, Qin W, Buyyounouski M, Ibragimov B, Hancock S, Han B, Xing L (2019 Feb) Prostate cancer classification with multiparametric MRI transfer learning model. Med Phys 46(2):756–765

    Article  Google Scholar 

  118. Zhu Y, Williams S, Zwiggelaar R (2007 Jun 1) A hybrid ASM approach for sparse volumetric data segmentation. Pattern recognition and image analysis 17(2):252–258

    Article  Google Scholar 

  119. Zhu H, Li Y, Ibrahim JG, Shi X, An H, Chen Y, Gao W, Lin W, Rowe DB, Peterson BS (2009) Regression models for identifying noise sources in magnetic resonance images. J Am Stat Assoc 104(486):623–637. https://doi.org/10.1198/jasa.2009.00299

    Article  MathSciNet  MATH  Google Scholar 

  120. Zhu W, Zeng N, Wang N (2010) Sensitivity, specifcity, accuracy, associated confdence interval and ROC analysis with practical SAS implementations. NESUG Proc 14(19):67

    Google Scholar 

  121. Zhu Y, Wei R, Gao G, Ding L, Zhang X, Wang X, Zhang J (2019 Apr) Fully automatic segmentation on prostate MR images based on cascaded fully convolution network. J Magn Reson Imaging 49(4):1149–1156

    Article  Google Scholar 

Download references

Acknowledgments

The authors are also grateful to the Ministry of Human Resource Development (MHRD), Govt. of India for funding this project(17-11/2015-PN-1) under Design Innovation Centre (DIC) sub-theme Medical Devices & Restorative Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Jindal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juneja, M., Saini, S.K., Gupta, J. et al. Survey of denoising, segmentation and classification of magnetic resonance imaging for prostate cancer. Multimed Tools Appl 80, 29199–29249 (2021). https://doi.org/10.1007/s11042-021-11044-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11044-2

Keywords

Navigation