Skip to main content
Log in

Melanoma localization and classification through faster region-based convolutional neural network and SVM

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Melanoma is a lethal skin cancer disease affecting millions of people around the globe and has a high mortality rate. Dermatologists perform the manual inspection through visual analysis of pigmented skin lesions for melanoma identification at the early stage. However, manual inspection for melanoma detection is limited due to variable accuracy and lesser availability of dermatologists. Therefore, there exists an urgent need to develop automated melanoma detection methods that can effectively localize and classify skin lesions. Accurate localization and classification of the melanoma lesions is a challenging task due to the presence of low contrast information between the moles and skin part, the massive color similarity between the infected and non-infected skin portions, presence of noise, hairs, and tiny blood vessels, variations in color, texture, illumination, contrast, blurring, and melanoma size. To address these afore-mentioned challenges, we propose an effective and efficient melanoma detection method. The proposed method consists of three steps: i) image preprocessing, ii) employing Faster Region-based Convolutional Neural Network (Faster-RCNN) for melanoma localization, and iii) application of Support Vector Machine (SVM) for the classification of localized melanoma region into benign and malignant classes. Performance of the proposed method is evaluated on the benchmark ISIC-2016 dataset launched by ISBI challenge-2016 that is diverse in terms of variations in illumination, color, texture, and size of melanoma, and presence of blurring, noise, hairs, and tiny blood vessels, etc. Moreover, we have also performed a cross-dataset validation over the ISIC-2017 dataset to show the efficacy of our method in real-world scenarios. Our experimental results illustrate that the proposed framework is efficient and able to effectively localize and classify the melanoma lesion than state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Alcón JF, Ciuhu C, Ten Kate W, Heinrich A, Uzunbajakava N, Krekels G, Siem D, de Haan G (2009) Automatic imaging system with decision support for inspection of pigmented skin lesions and melanoma diagnosis. IEEE J Sel Top Signal Process 3(1):14–25

    Article  Google Scholar 

  2. Al-Masni MA, Kim D-H, Kim T-S (2020) Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Comput Meth Prog Biomed 190:105351

    Article  Google Scholar 

  3. Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35(5):1207–1216

    Article  Google Scholar 

  4. Attia M, Hossny M, Nahavandi S, Yazdabadi A (2017) Skin melanoma segmentation using recurrent and convolutional neural networks. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp 292–296: IEEE

  5. Badrinarayanan V, Handa A, Cipolla R (2015) Segnet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling, arXiv preprint arXiv:.07293

  6. Ballerini L, Fisher R B, Aldridge B, Rees J (2013) A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions. In: Color Medical Image Analysis: Springer, pp 63–86

  7. Barata C, Ruela M, Francisco M, Mendonça T, Marques JS (2013) Two systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Syst J 8(3):965–979

    Article  Google Scholar 

  8. Barata C, Celebi ME, Marques JS (2017) Development of a clinically oriented system for melanoma diagnosis. Pattern Recogn 69:270–285

    Article  Google Scholar 

  9. Bi L, Kim J, Ahn E, Feng D, Fulham M (2017) Semi-automatic skin lesion segmentation via fully convolutional networks. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp 561–564: IEEE

  10. Burdick J, Marques O, Romero-Lopez A, Giró Nieto X, Weinthal J (2017) The impact of segmentation on the accuracy and sensitivity of a melanoma classifier based on skin lesion images. In: SIIM 2017 scientific program: Pittsburgh, PA, June 1–June 3, 2017, David L. Lawrence Convention Center, pp 1–6

  11. Cavalcanti PG, Scharcanski J (2011) Automated prescreening of pigmented skin lesions using standard cameras. Comput Med Imaging Graph 35(6):481–491

    Article  Google Scholar 

  12. Cavalcanti PG, Scharcanski J, Baranoski GV (2013) A two-stage approach for discriminating melanocytic skin lesions using standard cameras. Expert Syst Appl 40(10):4054–4064

    Article  Google Scholar 

  13. Cheng Y, Swamisai R, Umbaugh SE, Moss RH, Stoecker WV, Teegala S, Srinivasan SK (2008) Skin lesion classification using relative color features. Skin Res Technol 14(1):53–64

    Google Scholar 

  14. Codella N C, Nguyen Q-B, Pankanti S, Gutman D A, Helba B, Halpern A C, Smith J R (2017) Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J Res Dev 61, no4/5, pp. 5: 1–5: 15

  15. Codella N C, Gutman D, Celebi M E, Helba B, Marchetti M A, Dusza S W, Kalloo A, Liopyris K, Mishra N, Kittler H (2018) Skin lesion analysis toward melanoma detection: A challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), hosted by the International Skin Imaging Collaboration (ISIC), in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp 168–172: IEEE

  16. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  17. Dollár P, Zitnick CL (2014) Fast edge detection using structured forests. IEEE Trans Pattern Anal Mach Intell 37(8):1558–1570

    Article  Google Scholar 

  18. Fukunaga K, Narendra PM (1975) A branch and bound algorithm for computing k-nearest neighbors. IEEE Trans Comput 100(7):750–753

    Article  Google Scholar 

  19. Ganster H, Pinz P, Rohrer R, Wildling E, Binder M, Kittler H (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20(3):233–239

    Article  Google Scholar 

  20. Garnavi R, Aldeen M, Celebi ME, Bhuiyan A, Dolianitis C, Varigos G (2010) Automatic segmentation of dermoscopy images using histogram thresholding on optimal color channels. Int J Med Med Sci 1(2):126–134

    Google Scholar 

  21. Giotis I, Molders N, Land S, Biehl M, Jonkman MF, Petkov N (2015) MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Syst Appl 42(19):6578–6585

    Article  Google Scholar 

  22. Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp 1440–1448

  23. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 580–587

  24. Gulati S, Bhogal R K (2019) Detection of Malignant Melanoma Using Deep Learning. In: International Conference on Advances in Computing and Data Sciences. Springer, pp 312–325

  25. Gutman D, Codella N C, Celebi E, Helba B, Marchetti M, Mishra N, Halpern A (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC), arXiv preprint arXiv:.01397

  26. Harangi B (2018) Skin lesion classification with ensembles of deep convolutional neural networks. J Biomed Inform 86:25–32

    Article  Google Scholar 

  27. Hosny K M, Kassem M A, Foaud M M (2018) Skin Cancer Classification using Deep Learning and Transfer Learning. In: 2018 9th Cairo International Biomedical Engineering Conference (CIBEC), pp 90–93: IEEE

  28. Hu K, Niu X, Liu S, Zhang Y, Cao C, Xiao F, Yang W, Gao X (2019) Classification of melanoma based on feature similarity measurement for codebook learning in the bag-of-features model. Biomed Signal Process Control 51:200–209

    Article  Google Scholar 

  29. Lewis DD (1998) Naive (Bayes) at forty: The independence assumption in information retrieval, in European conference on machine learning. Springer, pp 4–15

  30. Li Y, Shen L (2018) Skin lesion analysis towards melanoma detection using deep learning network. Sensors 18(2):556

    Article  Google Scholar 

  31. Liao P-S, Chen T-S, Chung P-C (2001) A fast algorithm for multilevel thresholding. J Inf Sci Eng 17(5):713–727

    Google Scholar 

  32. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

  33. Mahbod A, Schaefer G, Wang C, Ecker R, Ellinge I (2019) Skin lesion classification using hybrid deep neural networks, in ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233: IEEE

  34. Nachbar F, Stolz W, Merkle T, Cognetta AB, Vogt T, Landthaler M, Bilek P, Braun-Falco O, Plewig G (1994) The ABCD rule of dermatoscopy: high prospective value in the diagnosis of doubtful melanocytic skin lesions. J Am Acad Dermatol 30(4):551–559

    Article  Google Scholar 

  35. Nida N, Irtaza A, Javed A, Yousaf MH, Mahmood MT (2019) Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering. Int J Med Inform 124:37–48

    Article  Google Scholar 

  36. Nijeweme-d’Hollosy WO, van Velsen L, Poel M, Groothuis-Oudshoorn CG, Soer R, Hermens H (2018) Evaluation of three machine learning models for self-referral decision support on low back pain in primary care. Int J Med Inform 110:31–41

    Article  Google Scholar 

  37. Okur E, Turkan M (2018) A survey on automated melanoma detection. Eng Appl Artif Intell 73:50–67

    Article  Google Scholar 

  38. Polesel A, Ramponi G, Mathews VJ (2000) Image enhancement via adaptive unsharp masking. IEEE Trans Image Process 9(3):505–510

    Article  Google Scholar 

  39. Rehman A, Khan MA, Mehmood Z, Saba T, Sardaraz M, Rashid M (2020) Microscopic melanoma detection and classification: a framework of pixel-based fusion and multilevel features reduction. Microsc Res Tech 83(4):410–423

    Article  Google Scholar 

  40. Ridler T, Calvard S (1978) Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern 8(8):630–632

    Article  Google Scholar 

  41. Rogers HW, Weinstock MA, Feldman SR, Coldiron BM (2015) Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA Dermatol 151(10):1081–1086

    Article  Google Scholar 

  42. Schaefer G, Krawczyk B, Celebi ME, Iyatomi H (2014) An ensemble classification approach for melanoma diagnosis. Memet Comput 6(4):233–240

    Article  Google Scholar 

  43. Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RG, Barzi A, Jemal A (2017) Colorectal cancer statistics. CA: a Cancer Journal for Clinicians 67(3):177–193

    Google Scholar 

  44. Silveira M, Nascimento JC, Marques JS, Marçal AR, Mendonça T, Yamauchi S, Maeda J, Rozeira J (2009) Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J Sel Top Signal Process 3(1):35–45

    Article  Google Scholar 

  45. Singh S, Alam M, Singh B (2020) Orthogonal moment feature extraction and classification of melanoma images. Journal of Information Optimization Sciences 41(1):195–203

    Article  Google Scholar 

  46. Society A C (2016) Cancer facts & figures. American Cancer Society

  47. Stanley RJ, Stoecker WV, Moss RH (2007) A relative color approach to color discrimination for malignant melanoma detection in dermoscopy images. Skin Res Technol 13(1):62–72

    Article  Google Scholar 

  48. Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312

    Article  Google Scholar 

  49. Tan TY, Zhang L, Lim CP (2020) Adaptive melanoma diagnosis using evolving clustering, ensemble and deep neural networks. Knowl-Based Syst 187:104807

    Article  Google Scholar 

  50. Uijlings JR, Van De Sande KE, Gevers T, Smeulders AW (2013) Selective search for object recognition. Int J Comput Vis 104(2):154–171

    Article  Google Scholar 

  51. Uricchio T, Bertini M, Seidenari L, Bimbo A (2015) Fisher encoded convolutional bag-of-windows for efficient image retrieval and social image tagging. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp 9–15

  52. Walter M (2016) Is this the end? machine learning and 2 other threats to radiologys future, goo. gIIM9X3SF, pp l3

  53. Yang J, Xie F, Fan H, Jiang Z, Liu J (2018) Classification for dermoscopy images using convolutional neural networks based on region average pooling. IEEE Access 6:65130–65138

    Article  Google Scholar 

  54. Yap J, Yolland W, Tschandl P (2018) Multimodal skin lesion classification using deep learning. Exp Dermatol 27(11):1261–1267

    Article  Google Scholar 

  55. Yu L, Chen H, Dou Q, Qin J, Heng P-A (2016) Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging 36(4):994–1004

    Article  Google Scholar 

  56. Yu Z, Jiang F, Zhou F, He X, Ni D, Chen S, Wang T, Lei B (2020) Convolutional descriptors aggregation via cross-net for skin lesion recognition. Appl Soft Comput:106281

  57. Zhang J, Xie Y, Wu Q, Xia Y (2019) Medical image classification using synergic deep learning. Med Image Anal 54:10–19

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rehan Ashraf.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawaz, M., Masood, M., Javed, A. et al. Melanoma localization and classification through faster region-based convolutional neural network and SVM. Multimed Tools Appl 80, 28953–28974 (2021). https://doi.org/10.1007/s11042-021-11120-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11120-7

Keywords

Navigation