Skip to main content
Log in

Statistical texture image retrieval in DD-DTCWT domain using magnitudes and relative phases

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Statistical models of transform coefficients are an efficient way to discriminate between texture classes. Statistical-based approaches provide a natural way to solve texture retrieval problem. In this paper, we proposed a new framework for textured image retrieval in DD-DTCWT (Double-density dual-tree complex wavelet transform) domain, which is based on the mixture of Cauchy and Vonn statistical models. Firstly, the image is decomposed into frequency subbands using DD-DTCWT, and the amplitude and relative phase of DD-DTCWT coefficients are computed. Secondly, Cauchy and Vonn distributions are employed respectively to capture the statistical characteristics of the magnitude and relative phase of DD-DTCWT coefficients, and the Cauchy and Vonn model parameters are utilized to construct a compact texture image feature space. Finally, image similarity measurement is accomplished by using closed-form solutions for the Kullback–Leibler divergences between the Cauchy and Vonn statistical models. Experimental results demonstrate the high efficiency of our textured image retrieval scheme, which can provide better retrieval rates and lower computational cost, in comparison with the state-of-the-art approaches recently proposed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Al-Marzouqi H, Hu Y, AlRegib G (2019) Texture retrieval using periodically extended and adaptive curvelets. Signal Process Image Commun 76:252–260

    Article  Google Scholar 

  2. Amsterdam Library of Textures (2018) [Online]. Available: http://staff.science.uva.nl/~aloi/public_alot

  3. Baradarani A, Jonathan WQM, Ahmadi M (2013) An efficient illumination invariant face recognition framework via illumination enhancement and DD-DTWT filtering. Pattern Recogn 46(1):57–72

    Article  Google Scholar 

  4. Brodatz texture database (2018) [Online]. Available: http://www.ux.uis.no/tranden/brodatz.html

  5. Celik C, Bilge HS (2017) Content based image retrieval with sparse representations and local feature descriptors: a comparative study. Pattern Recogn 68:1–13

    Article  Google Scholar 

  6. Chaker A, Kaaniche M, Benazza-Benyahia A (2018) Efficient transform-based texture image retrieval techniques under quantization effects. Multimed Tools Appl 77:1–25

    Article  Google Scholar 

  7. Dubey SR, Singh SK, Singh RK (2016) Multichannel decoded local binary patterns for content-based image retrieval. IEEE Trans Image Process 25(9):4018–4032

    Article  MathSciNet  Google Scholar 

  8. Engin MA, Cavusoglu B (2019) Rotation invariant curvelet based image retrieval & classification via Gaussian mixture model and co-occurrence features. Multimed Tools Appl 78:6581–6605

    Article  Google Scholar 

  9. Karine A, Maliani ADE, Hassouni ME (2018) A novel statistical model for content-based stereo image retrieval in the complex wavelet domain. J Vis Commun Image Represent 50:27–39

    Article  Google Scholar 

  10. Kwitt R, Meerwald P, Uhl A (2008) A lightweight Rao-Cauchy detector for additive watermarking in the DWT domain. Proceedings of the 10th ACM workshop on Multimedia and security, New York, pp 33–42

    MATH  Google Scholar 

  11. Lasmar NE, Berthoumieu Y (2014) Gaussian copula multivariate modeling for texture image retrieval using wavelet transforms. IEEE Trans Image Process 23(5):2246–2261

    Article  MathSciNet  Google Scholar 

  12. Latif A, Rasheed A, Sajid U, Ahmed J, Ali N et al (2019) Content-based image retrieval and feature extraction: a comprehensive review. Math Probl Eng 2019:21

    Article  Google Scholar 

  13. Li C, Duan G, Zhong F (2015) Rotation invariant texture retrieval considering the scale dependence of Gabor wavelet. IEEE Trans Image Process 24(8):2344–2354

    Article  MathSciNet  Google Scholar 

  14. Li X, Uricchio T, Ballan L, Snoek CG, Bimbo CG (2016) Socializing the semantic gap: a comparative survey on image tag assignment, refinement, and retrieval. ACM Computing Surveys (CSUR) 49(1):1–39

    Article  Google Scholar 

  15. Li C, Huang Y, Zhu L (2017) Color texture image retrieval based on Gaussian copula models of Gabor wavelets. Pattern Recogn 64:118–129

    Article  Google Scholar 

  16. Majumdar I, Chatterji BN, Kar A (2019) Particle swarm optimization method for texture image retrieval. Comput Intell Sensor Netw 776:405–426

    Article  Google Scholar 

  17. Manjunath BS, Ma WY (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):837–842

    Article  Google Scholar 

  18. Morand C, Benois-Pineau J, Domenger JP et al (2010) Scalable object-based video retrieval in HD video dataBases. Image Commun 25(6):450–465

    Google Scholar 

  19. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29(1):51–59

    Article  Google Scholar 

  20. Piras L, Giacinto G (2017) Information fusion in content based image retrieval: a comprehensive overview. Inf Fusion 37:50–60

    Article  Google Scholar 

  21. Qayyum A, Anwar SM, Awais M, Majid M (2017) Medical image retrieval using deep convolutional neural network. Neurocomputing 266:8–20

    Article  Google Scholar 

  22. Rallabandi VR, Rallabandi VPS (2008) Rotation-invariant texture retrieval using wavelet-based hidden Markov trees. Signal Process 88(10):2593–2598

    Article  Google Scholar 

  23. Rami H, Belmerhnia L, Maliani ADE (2016) Texture retrieval using mixtures of generalized Gaussian distribution and Cauchy–Schwarz divergence in wavelet domain. Signal Process Image Commun 42:45–58

    Article  Google Scholar 

  24. Salzburg Textures (2018) [Online]. Available: http://wavelab.at/sources/STex

  25. Sana JK, Islam MM (2018) PLT-based spectral features for texture image retrieval. IET Image Process 12(11):2065–2074

    Article  Google Scholar 

  26. Sotoodeh M, Moosavi MR, Boostani R (2019) A novel adaptive LBP-based descriptor for color image retrieval. Expert Syst Appl 127:342–352

    Article  Google Scholar 

  27. Vasconcelos N, Lippman A (1997) Library-based coding: a representation for efficient video compression and retrieval. Proceedings of data compression conference (DCC’97), Snowbird, pp 121–130

    Google Scholar 

  28. Ves ED, Acevedo D, Ruedin A et al (2014) A statistical model for magnitudes and angles of wavelet frame coefficients and its application to texture retrieval. Pattern Recogn 47(9):2925–2939

    Article  Google Scholar 

  29. Vision Texture (2018) MIT Vision and Modeling Group, Cambridge, MA, USA [Online]. Available: http://vismod.media.mit.edu

  30. Vo AP, Oraintara S (2010) A study of relative phase in complex wavelet domain: property, statistics and applications in texture image retrieval and segmentation. Signal Process Image Commun 25(1):28–46

    Article  Google Scholar 

  31. Vo A, Oraintara S, Nguyen N (2011) Vonn distribution of relative phase for statistical image modeling in complex wavelet domain. Signal Process 91(1):114–125

    Article  Google Scholar 

  32. Yang J, Li YF, Wang RG, Xue LX, Zhang QY (2016) Texture image retrieval method based on dual-generalized Gaussian model and multi-scale fusion. J Electron Inf Technol 38(11):2856–2863

    Google Scholar 

  33. Yang HY, Liang LL, Zhang C, Wang XB, Niu PP, Wang XY (2019) Weibull statistical modeling for textured image retrieval using nonsubsampled contourlet transform. Soft Comput 23(13):4749–4764

    Article  Google Scholar 

  34. Yu L, Feng L, Wang H (2018) Multi-trend binary code descriptor: a novel local texture feature descriptor for image retrieval. SIViP 12:247–254

    Article  Google Scholar 

  35. Yuan H, Zhang XP (2010) Statistical modeling in the wavelet domain for compact feature extraction and similarity measure of images. IEEE Trans. Circuits Syst Video Technol 20(3):439–445

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported partially by the National Natural Science Foundation of China (Nos. 61472171 & 61701212), Key Scientific Research Project of Liaoning Provincial Education Department (LZ2019001), and Natural Science Foundation of Liaoning Province (2019-ZD-0468).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan-Pan Niu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, PP., Tian, J., Wu, QC. et al. Statistical texture image retrieval in DD-DTCWT domain using magnitudes and relative phases. Multimed Tools Appl 80, 29893–29913 (2021). https://doi.org/10.1007/s11042-021-11124-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11124-3

Keywords

Navigation