Skip to main content

Advertisement

Log in

An automated CNN architecture search for glaucoma diagnosis based on NEAT

  • 1176: Artificial Intelligence and Deep Learning for Biomedical Applications
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Glaucoma is an ocular disease that causes damage to the optic nerve, inducing successive narrowing of the visual field in affected patients due to an increased intraocular pressure, which can lead patients to blindness in an advanced stage without clinical reversal. For several years, the use of deep learning with convolutional neural networks (CNNs) has been successfully put into practice for several years. However, building a deep learning network requires an amount of experiments to find the fittest parameters, best choice of layers and an amount of available data. Thus it is not always able to produce satisfactory results due to the amount of parameters that need to be configured to adapt the CNN architecture to the problem in question, in most cases, with small datasets. Based on this scenario, this paper proposes and analyzes a CNN architecture construction from scratch, based on Neuroevolution of Augmenting Topologies for diagnosing glaucoma from fundus images. The method was evaluated with RIM-ONE and the combination of five glaucoma datasets in which we highlight 0.961 and 0.943 of f1-score, respectively for each dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbas Q (2017) Glaucoma-Deep: Detection of glaucoma eye disease on retinal fundus images using deep learning. Int J Adv Comput Sci Appl 8(6):41–45

    Google Scholar 

  2. Abuiziah I, Shakarneh N (2013) A review of genetic algorithm optimization: Operations and applications to water pipeline systems. Int J Math Comput Phys Electric Comput Eng 7(12):1782–1788

    Google Scholar 

  3. Ahmadi A (2011) Neural network based unified particle swarm optimization for prediction of asphaltene precipitation. Fuel Energy Abstracts 314. https://doi.org/10.1016/j.fluid.2011.10.016

  4. Ahmadi A (2015) Applying a sophisticated approach to predict co2 solubility in brines: Application to co2 sequestration. Int J Low-Carbon Technol 11. https://doi.org/10.1093/ijlct/ctu034

  5. Ahmadi A (2015) Developing a robust surrogate model of chemical flooding based on the artificial neural network for enhanced oil recovery implications. Math Probl Eng 2015:1–9. https://doi.org/10.1155/2015/706897

    Google Scholar 

  6. Ahmadi M, Hosseini SM, Ebadi M (2014) Connectionist model predicts the porosity and permeability of petroleum reservoirs by means of petro-physical logs: Application of artificial intelligence. J Pet Sci Eng 123:183–200. https://doi.org/10.1016/j.petrol.2014.08.026

    Article  Google Scholar 

  7. Ahmadi M (2011) Prediction of asphaltene precipitation using artificial neural network optimized by imperialist competitive algorithm. J Petrol Explor Prod Technol 1(2-4):99–106

    Article  Google Scholar 

  8. Al-Bander B, Al-Nuaimy W, Al-Taee MA, Zheng Y (2017) Automated glaucoma diagnosis using deep learning approach. In: 2017 14th International multi-conference on systems, signals devices (SSD). IEEE, Marrakech, pp 207?210. https://doi.org/10.1109/SSD.2017.8166974

  9. Anwar S, Hwang K, Sung W (2015) Fixed point optimization of deep convolutional neural networks for object recognition. In: 2015 IEEE International conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 1131–1135

  10. Bahadori A, Shadizadeh SR (2015) A rigorous model to predict the amount of dissolved calcium carbonate concentration throughout oil field brines: Side effect of pressure and temperature. Fuel 139:154–159. https://doi.org/10.1016/j.fuel.2014.08.044

    Article  Google Scholar 

  11. Bajwa MN, Malik MI, Siddiqui SA, Dengel A, Shafait F, Neumeier W, Ahmed S (2019) Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. BMC Med Inf Decis Making 19(1). https://doi.org/10.1186/s12911-019-0842-8

  12. Benzebouchi NE, Azizi N, Bouziane SE (2018) Glaucoma diagnosis using cooperative convolutional neural networks. Int J Adv Electron Comput Sci (IJAECS)

  13. Bergstra J (2013) Hyperopt: Distributed asynchronous hyperparameter optimization in python. http://jaberg.github.com/hyperopt. [Available; accessed in 08-Jan-2019]

  14. Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimization. In: Proceedings of the 24th international conference on neural information processing systems, NIPS’11. Curran Associates Inc., pp 2546–2554

  15. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13:281–305

    MathSciNet  MATH  Google Scholar 

  16. Bochinski E, Senst T, Sikora T (2017) Hyper-parameter optimization for convolutional neural network committees based on evolutionary algorithms. In: 2017 IEEE International conference on image processing (ICIP). IEEE, pp 3924–3928

  17. Bottaci L, Drew PJ, Hartley JE, Hadfield MB, Farouk R, Lee PW, Macintyre IM, Duthie GS, Monson JR (1997) Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. Lancet 350(9076):469–472

    Article  Google Scholar 

  18. Brochu E, Cora VM, De Freitas N (2010) A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv:1012.2599

  19. Budai A, Bock R, Maier A, Hornegger J, Michelson G (2013) Robust vessel segmentation in fundus images. Int J Biomed Imaging

  20. Cerentinia A, Welfera D, d’Ornellasa MC, Haygertb CJP, Dottob GN (2018) Automatic identification of glaucoma sing deep learning methods. In: Proceedings of the 16th World Congress on Medical and Health Informatics. Precision Healthcare Through Informat. (MEDINFO), vol 245. p 318

  21. Chai Y, Liu H, Xu J (2020) A new convolutional neural network model for peripapillary atrophy area segmentation from retinal fundus images. Appl Soft Comput 86:105890

    Article  Google Scholar 

  22. Choi JY, Yoo TK, Seo JG, Kwak J, Um TT, Rim TH (2017) Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database. Plos One 12 (11):1–16. 10.1371/journal.pone.0187336

    Google Scholar 

  23. Christopher M, Belghith A, Bowd C, Proudfoot JA, Goldbaum MH, Weinreb RN, Girkin CA, Liebmann JM, Zangwill LM (2018) Performance of deep learning architectures and transfer learning for detecting glaucomatous optic neuropathy in fundus photographs. Sci Rep 8(1):16685

    Article  Google Scholar 

  24. Diaz-Pinto A, Colomer A, Naranjo V, Morales S, Xu Y, Frangi AF (2019) Retinal image synthesis and semi-supervised learning for glaucoma assessment. IEEE Trans Med Imaging 38(9):2211–2218. 10.1109/TMI.2019.2903434

    Article  Google Scholar 

  25. Eggensperger K, Feurer M, Hutter F, Bergstra J, Snoek J, Hoos H, Leyton-Brown K (2013) Towards an empirical foundation for assessing bayesian optimization of hyperparameters. In: NIPS workshop on Bayesian optimization in theory and practice, vol 10. p 3

  26. Elangovan P, Nath MK (2020) Glaucoma assessment from color fundus images using convolutional neural network. Int J Imaging Sys Technol

  27. Fausett L (1994) Fundamentals of neural networks: architectures, algorithms, and applications. Prentice-Hall Inc, Hoboken

    MATH  Google Scholar 

  28. Fumero F, Alayon S, Sanchez JL, Sigut J, Gonzalez-Hernandez M (2011) RIM-ONE: An open retinal image database for optic nerve evaluation. In: 2011 24th International symposium on computer-based medical systems (CBMS). IEEE, Bristol, pp 1–6. https://doi.org/10.1109/CBMS.2011.5999143

  29. Gómez-Valverde JJ, Antón A, Fatti G, Liefers B, Herranz A, Santos A, Sánchez CI, Ledesma-Carbayo MJ (2019) Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomed Opt Express 10(2):892–913

    Article  Google Scholar 

  30. Hemelings R, Elen B, Barbosa-Breda J, Lemmens S, Meire M, Pourjavan S, Vandewalle E, Van de Veire S, Blaschko MB, De Boever P et al (2020) Accurate prediction of glaucoma from colour fundus images with a convolutional neural network that relies on active and transfer learning. Acta Ophthalmol 98 (1):e94–e100

    Article  Google Scholar 

  31. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. University of Michigan Press, Ann Arbor

    MATH  Google Scholar 

  32. Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167

  33. Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. Computing Research Repository arXiv:1412.6980

  34. Kummet C (2013) Statistical modeling to improve the detection of glaucoma progression. Ph.D. thesis, University of Iowa, Iowa City, Iowa. Doctor of Philosophy

  35. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Paper presented at the meeting of the Proceedings of the IEEE 86(11):2278–2324

    Google Scholar 

  36. Martins J, Cardoso JS, Soares F (2020) Offline computer-aided diagnosis for glaucoma detection using fundus images targeted at mobile devices. Comput Methods Programs Biomed 192:105341. https://doi.org/10.1016/j.cmpb.2020.105341, https://www.sciencedirect.com/science/article/pii/S0169260719312015

    Article  Google Scholar 

  37. Masumi M, Kharrat R, Mohammadi A (2014) Gas analysis by in situ combustion in heavy-oil recovery process: Experimental and modeling studies. Chem Eng Technol 37. https://doi.org/10.1002/ceat.201300155

  38. Memon I, Ursani AA, Bohyo MA, Chandio R (2019) Automated diagnosis of glaucoma using deep learning architecture

  39. Miikkulainen R, Liang JZ, Meyerson E, Rawal A, Fink D, Francon O, Raju B, Shahrzad H, Navruzyan A, Duffy N, Hodjat B (2017) Evolving deep neural networks. Computing Research Repository (CoRR) arXiv:1703.00548

  40. Moosavi SR, Wood D, Ahmadi M, Choubineh A (2019) Ann-based prediction of laboratory-scale performance of co2-foam flooding for improving oil recovery. Nat Resour Res :1–19. https://doi.org/10.1007/s11053-019-09459-8

  41. Mukhopadhyay DM, Balitanas MO, Farkhod A, Jeon SH, Bhattacharyya D (2009) Genetic algorithm: A tutorial review. Int J Grid Distrib Comput 2(3):25–32

    Google Scholar 

  42. Myers JS, Fudemberg SJ, Lee D (2018) Evolution of optic nerve photography for glaucoma screening: a review. Clin Exper Ophthalmol 46(2):169–176. 10.1111/ceo.13138

    Article  Google Scholar 

  43. Nättinen J (2015) Effects of preserved and preservative-free glaucoma drugs on proteomic expression levels in corneal and conjunctival epithelial cells in vitro. Master’s thesis, University of Tampere, Tampere, Finland. Institute of Biosciences and Medical Technology (BioMediTech)

  44. Pelikan M, Goldberg DE, Cantú-Paz E (1999) Boa: The bayesian optimization algorithm. In: Proceedings of the 1st annual conference on genetic and evolutionary computation - Volume 1, GECCO’99. Morgan Kaufmann Publishers Inc., San Francisco, pp 525–532

  45. Plaut DC, Nowlan SJ, Hinton G (1986) Experiments on learning back propagation. Tech. Rep. CMUCS?86?126, Carnegie? Mellon University, Pittsburgh, PA

  46. Pumperla M (2018) Hyperas. http://maxpumperla.com/hyperas/. [Available; accessed in 12-Jan-2019]

  47. Qolomany B, Maabreh M, Al-Fuqaha A, Gupta A, Benhaddou D (2017) Parameters optimization of deep learning models using particle swarm optimization. In: 2017 13th International wireless communications and mobile computing conference (IWCMC). IEEE, pp 1285–1290

  48. Qureshi I, Khan MA, Sharif M, Saba T, Ma J (2020) Detection of glaucoma based on cup-to-disc ratio using fundus images. Int J Intell Syst Technol Appl 19(1):1–16

    Google Scholar 

  49. Raghavendra U, Fujita H, Bhandary S, Gudigar A, Tan J, Acharya U (2018) Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inform Sci 441:41–49. https://doi.org/10.1016/j.ins.2018.01.051

    Article  MathSciNet  Google Scholar 

  50. Rossum GV (1991) Python. https://www.python.org. [Available; accessed in 08-Jan-2019]

  51. Ruengkitpinyo W, Kongprawechnon W, Kondo T, Bunnun P, Kaneko H (2015) Glaucoma screening using rim width based on isnt rule. In: 2015 6th International conference of information and communication technology for embedded systems (IC-ICTES). IEEE, pp 1–5

  52. Selvaraju RR, Das A, Vedantam R, Cogswell M, Parikh D, Batra D (2016) Grad-CAM: Visual explanations from deep networks via gradient-based localization. Computing Research Repository (CoRR) arXiv:1610.02391

  53. Shadizadeh SR (2012) New approach for prediction of asphaltene precipitation due to natural depletion by using evolutionary algorithm concept. Fuel 102:716–723. https://doi.org/10.1016/j.fuel.2012.05.050

    Article  Google Scholar 

  54. Singh H, Saini S, Lakshminarayanan V (2021) Rapid classification of glaucomatous fundus images

  55. Sivanandam SN, Deepa SN (2007) Introduction to genetic algorithms, 1st edn. Springer Publishing Company, Incorporated TN, Berlin

    MATH  Google Scholar 

  56. Sivaswamy J, Krishnadas S, Joshi GD, Jain M, Tabish AUS (2014) Drishti-GS: Retinal image dataset for optic nerve head (ONH) segmentation. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). IEEE, pp 53–56

  57. Sobajic DJ, Pao YH (1989) Artificial neural-net based dynamic security assessment for electric power systems. IEEE Trans Power Syst 4(1):220–228

    Article  Google Scholar 

  58. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  MATH  Google Scholar 

  59. Stanley KO, Miikkulainen R (2002) Evolving neural networks through augmenting topologies. Evol Comput 10(2):99–127. https://doi.org/10.1162/106365602320169811

    Article  Google Scholar 

  60. Wang B, Sun Y, Xue B, Zhang M (2018) Evolving deep convolutional neural networks by variable-length particle swarm optimization for image classification. Computing Research Repository (CoRR) arXiv:1803.06492

  61. Wang J, Kumbasar T (2019) Parameter optimization of interval type-2 fuzzy neural networks based on pso and bbbc methods. IEEE/CAA J Autom Sin 6(1):247–257

    Article  Google Scholar 

  62. Warner B, Misra M (1996) Understanding neural networks as statistical tools. Am Stat 50(4):284–293

    Google Scholar 

  63. Weinreb RN, Khaw PT (2004) Primary open-angle glaucoma. Lancet 363(9422):1711–1720. https://doi.org/10.1016/S0140-6736(04)16257-0

    Article  Google Scholar 

  64. Xie L, Yuille AL (2017) Genetic CNN. Computing Research Repository (CoRR) arXiv:1703.01513

  65. Xu B, Wang N, Chen T, Li M (2015) Empirical evaluation of rectified activations in convolutional network. Computing Research Repository (CoRR) arXiv:1505.00853

  66. Yadav SL, Soha A (2017) Comparative study of different selection techniques in genetic algorithm. Int J Eng Sci Math 6(3)

  67. Young SR, Rose DC, Karnowski TP, Lim SH, Patton RM (2015) Optimizing deep learning hyper-parameters through an evolutionary algorithm. In: Proceedings of the workshop on machine learning in high-performance computing environments. pp 1–5

  68. Zheng L, Zhao Y, Wang S, Wang J, Tian Q (2016) Good practice in CNN feature transfer. Computing Research Repository arXiv:1604.00133

  69. Zhou Q, Davidson J, Fouad A (1994) Application of artificial neural networks in power system security and vulnerability assessment. IEEE Trans Power Syst 9(1):525–532

    Article  Google Scholar 

  70. Zhou W, Yi Y, Bao J, Wang W (2019) Adaptive weighted locality-constrained sparse coding for glaucoma diagnosis. Med Biol Eng Comput 57(9):2055–2067

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan C. M. Lima.

Ethics declarations

Conflict of Interests

There is no conflict of interest in this research work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, A.C.M., Júnior, G.B., de Almeida, J.D.S. et al. An automated CNN architecture search for glaucoma diagnosis based on NEAT. Multimed Tools Appl 81, 13441–13465 (2022). https://doi.org/10.1007/s11042-021-11239-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11239-7

Keywords

Navigation