Skip to main content
Log in

Shape classification guided method for automated extraction of urban trees from terrestrial laser scanning point clouds

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Accurate detection and extraction of individual trees is one of hottest topics, which can be widely used in vehicles navigation, tree modeling, tree growth monitoring and urban green quantity estimation. The difficulty associated with individual trees extraction is the occlusion with other objects in cluttered point clouds of urban scenes, which inhibits the automatic extraction of individual trees. In this paper, we present a comprehensive framework that can be used to extract individual trees from terrestrial scanned outdoor scene. In our framework, a bottom-up method by shape-guided classification is achieved to select the candidate tree crowns and tree trunks, and a novel three-stage shape merging rule containing localization, filtering, and matching (LFM) are proposed to generate a complete individual tree. The primary advantage of the proposed method is that it is independent of the quality of data and different shapes. We made comparison experiments of classification methods of support vector machine and random forest on the accuracy assessment. The effectiveness of the proposed framework was tested in five street scenarios in point clouds from Oakland outdoor MLS dataset. The results for the five test sites achieved tree detection rates higher than 97%; the overall accuracy was approximately 98%, and the completion quality of both procedures was 96%. Non-detected trees are always sparse which come from occlusions in the point cloud data; most misclassifications occurred in man-made pillars adjacent to trees and have the same height with tree trunk. Comparison experiments to the existing methods are made to illustrate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barnea S, Filin S (2013) Segmentation of terrestrial laser scanning data using geometry and image information. ISPRS J Photogramm Remote Sens 76(1):33–48

    Article  Google Scholar 

  2. Bienert A, Scheller S, Keane E, Mohan F, Nugent C (2012) Tree detection and diameter estimations by analysis of forest terrestrial laser scanner point clouds 50–55

  3. Bonneau DA, Difrancesco PM, Hutchinson DJ (2020) A method for vegetation extraction in mountainous terrain for rockfall simulation. Remote Sens Environ 251

  4. Börcs A, Nagy B, Benedek C (2017) Instant object detection in lidar point clouds. IEEE Geosci Remote Sens Lett 14(7):992–996

    Article  Google Scholar 

  5. Demantke J, Mallet C, David N, Vallet B (2012) Dimensionality based scale selection in 3d lidar point clouds. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci 3812(5):97–102

    Article  Google Scholar 

  6. Dimitrov A, Golparvar-Fard M (2015) Segmentation of building point cloud models including detailed architectural/structural features and mep systems. Autom Constr 51(5):32–45

    Article  Google Scholar 

  7. Dold C, Brenner C (2004) Automatic matching of terrestrial scan data as a basis for the generation of detailed 3d city models

  8. Guan H, Li J, Yu Y, Wang C, Chapman M, Yang B (2014) Using mobile laser scanning data for automated extraction of road markings. ISPRS J Photogramm Remote Sens 87(1):93–107

    Article  Google Scholar 

  9. Husain A, Vaishya RC (2020) An automated approach for street trees detection using mobile laser scanner data. Remote Sens Appl Soc Environ 20

  10. Hyyppä J, Kelle O, Lehikoinen M, Inkinen M (2001) A segmentation-based method to retrieve stem volume estimates from 3-d tree height models produced by laser scanners, 39(5), 969–975

  11. Jaakkola A, Hyyppä J, Kukko A, Yu X, Kaartinen H, Lehtomäki M, Lin Y (2010) A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements. ISPRS J Photogramm Remote Sens 65(6):514–522

    Article  Google Scholar 

  12. Jutras P, Prasher SO, Mehuys GR (2009) Prediction of street tree morphological parameters using artificial neural networks. Comput Electron Agric 67(1):9–17

    Article  Google Scholar 

  13. Kang Z (2018) Automatic recognition of pole-like objects from mobile laser scanning point clouds. Remote Sens 10:1–23

    Google Scholar 

  14. Lalonde JF, Vandapel N, Huber DF, Hebert M (2006) Natural terrain classification using three dimensional ladar data for ground robot mobility. J Field Rob 23(10):839–861

    Article  Google Scholar 

  15. Leng L, Zhang J, Xu J, Khan MK, Alghathbar K (2010) Dynamic weighted discrimination power analysis: A novel approach for face and palmprint recognition in dct domain. Int J Phys Sci 5(17):2543–2554

    Google Scholar 

  16. Li J, Hu B, Noland TL (2013) Classification of tree species based on structural features derived from high density lidar data. Agric For Meteorol 171-172(s 171-172), 104–114

  17. Li L, Li D, Zhu H, Li Y (2016) A dual growing method for the automatic extraction of individual trees from mobile laser scanning data. ISPRS J Photogramm Remote Sens 120:37–52

    Article  Google Scholar 

  18. Liang Z, Shen J (2019) Local semantic siamese networks for fast tracking, IEEE Trans Image Process 29(99)

  19. Lindenbergh RC, Berthold D, Sirmacek B, Herrerohuerta M, Wang J, Ebersbach D (2015) Automated large scale parameter extraction of road-side trees sampled by a laser mobile mapping system. Int Arch Photogramm Remote Sens and S XL-3/W3, 589–594

  20. Liu X, Li H, Meng W, Xiang S, Zhang X (2017) 3d point cloud classification based on discrete conditional random field. In International Conference on Technologies for E-Learning and Digital Entertainment 115–137

  21. Liu L, Lim S, Shen X, Yebra M (2019) A hybrid method for segmenting individual trees from airborne lidar data, Computers and Electronics in Agriculture 163(C), 104871–104871

  22. Lu X, Guo Q, Li W, Flanagan J (2014) A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data. ISPRS J Photogramm Remote Sens 94(4):1–12

    Article  Google Scholar 

  23. Maalek R, Lichti DD, Ruwanpura JY (2018) Robust segmentation of planar and linear features of terrestrial laser scanner point clouds acquired from construction sites. Sensors 18(3):819

    Article  Google Scholar 

  24. Ma L, Li Y, Li J, Wang C, Wang R, Chapman M (2018) Mobile laser scanned point-clouds for road object detection and extraction: A review. Remote Sens 10(10)

  25. Mayr A, Rutzinger M, Bremer M, Elberink SO, Stumpf F, Geitner C (2017) Object-based classification of terrestrial laser scanning point clouds for landslide monitoring. Photogramm Rec 32(160):377–397

    Article  Google Scholar 

  26. Meng Q, Wang W, Zhou T, Shen J, Van Gool L, Dai D (2020) Weakly supervised 3d object detection from lidar point cloud. In European Conference on Computer Vision, 2020. ECCV 2020, 515–531

  27. Monnier F, Vallet B, Soheilian B (2012) Trees detection from laser point clouds acquired in dense urban areas by a mobile mapping system

  28. Munoz D, Bagnell JA, Vandapel N, Hebert M (2009) Contextual classification with functional max-margin markov networks. In Comput Vis Pattern Recognit 2009. CVPR 2009. IEEE Conference on

  29. Ning X, Tian G, Wang Y (2019) Top-down approach to the automatic extraction of individual trees from scanned scene point cloud data. Adv Electr Comput Eng 19(3):11–18

    Article  Google Scholar 

  30. Puttonen E, Jaakkola A, Litkey P, Hyyppä J (2011) Tree classification with fused mobile laser scanning and hyperspectral data. Sensors 11(5):5158–5182

    Article  Google Scholar 

  31. Pu S, Rutzinger M, Vosselman G, Elberink SO (2011) Recognizing basic structures from mobile laser scanning data for road inventory studies. ISPRS J Photogramm Remote Sens 66(6):S28–S39

    Article  Google Scholar 

  32. Rabbani T, Dijkman S, Heuvel FVD, Vosselman G (2007) An integrated approach for modelling and global registration of point clouds. ISPRS J Photogramm Remote Sens 61(6):355–370

    Article  Google Scholar 

  33. Ramiya AM, Nidamanuri RR, Krishnan R (2019) Individual tree detection from airborne laser scanning data based on supervoxels and local convexity. Remote Sens Appl Soc Environ 15

  34. Raumonen P, Kaasalainen M, Åkerblom M, Kaasalainen S, Kaartinen H, Vastaranta M, Disney M, Lewis P (2013) Fast automatic precision tree models from terrestrial laser scanner data. Remote Sens 5(2):491–520

    Article  Google Scholar 

  35. Rutzinger M, Pratihast AK, Elberink SJO, Vosselman G (2011) Tree modelling from mobile laser scanning datasets. Photogramm Rec 26(135):361–372

    Article  Google Scholar 

  36. Shen J, Tang X, Dong X, Shao L (2019) Visual object tracking by hierarchical attention siamese network. IEEE Trans on Cybern PP(99), 1–13

  37. Sirmacek B, Lindenbergh R (2015) Automatic classification of trees from laser scanning point clouds, Isprs Annals of Photogramm Remote Sens Spat Informa II-3/W5(4), 137–144

  38. Trochta J, Krek M, Vrka T, Krl K (2017) 3d forest: An application for descriptions of three-dimensional forest structures using terrestrial lidar. PLoS One 12(5)

  39. Vanegas CA, Aliaga DG, Benes B (2012) Automatic extraction of manhattan-world building masses from 3d laser range scans. IEEE Trans Vis Comput Graph 18(10):1627–1637

    Article  Google Scholar 

  40. Vo AV, Truong-Hong L, Laefer DF, Bertolotto M (2015) Octree-based region growing for point cloud segmentation. ISPRS J Photogramm Remote Sens 104:88–100

    Article  Google Scholar 

  41. Vosselman G (2013) Point cloud segmentation for urban scene classification, ISPRS - Int. Arch Photogramm Remote Sens Spat Inf Sci XL-7/W2(7), 257–262

  42. Wang Y, Weinacker H, Koch B (2008) A lidar point cloud based procedure for vertical canopy structure analysis and 3d single tree modelling in forest. Sensors 8(6):3938–3951

    Article  Google Scholar 

  43. Weinmann M, Jutzi B, Hinz S, Mallet C (2015) Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS J Photogramm Remote Sens 105:286–304

    Article  Google Scholar 

  44. Weinmann M (2016) Reconstruction and analysis of 3D scenes: from irregularly distributed 3D points to object classes, Springer International Publishing

  45. Williams J, Schnlieb CB, Swinfield T, Lee J, Cai X, Qie L, Coomes DA (2020) 3d segmentation of trees through a flexible multiclass graph cut algorithm. IEEE Trans Geosci Remote Sens 58(2):754–776

    Article  Google Scholar 

  46. Wu B, Yu B, Yue W, Shu S, Tan W, Hu C, Huang Y, Wu J, Liu H (2013) A voxel-based method for automated identification and morphological parameters estimation of individual street trees from mobile laser scanning data. Remote Sens 5(2):584–611

    Article  Google Scholar 

  47. Wang J, Lindenbergh R, Menenti M (2018) Scalable individual tree delineation in 3d point clouds. Photogramm Rec 33(163):315–340

    Article  Google Scholar 

  48. Xiang B, Yao J, Lu X, Li L, Xie R (2017) Segmentation-based classification for 3d urban point clouds. IEEE Int Conf Inf Autom 172–177

  49. Xu S, Ye N, Xu S, Zhu F (2018) A supervoxel approach to the segmentation of individual trees from lidar point clouds. Remote Sens Lett 9, 515–523

  50. Xu S, Xu S, Ye N, Zhu F (2018) Automatic extraction of street trees’ nonphotosynthetic components from mls data. Int J Appl Earth Obs Geoinf 69, 64–77

  51. Yang B, Dong Z (2013) A shape-based segmentation method for mobile laser scanning point clouds. ISPRS J Photogramm Remote Sens 81(7):19–30

    Article  Google Scholar 

  52. Yang J, Kang Z, Cheng S, Yang Z, Akwensi P (2020) An individual tree segmentation method based on watershed algorithm and 3d spatial distribution analysis from airborne lidar point clouds. IEEE J Sel Top Appl Earth Obs Remote Sens PP(99), 1–1

  53. Yao W, Fan H (2013) Automated detection of 3d individual trees along urban road corridors by mobile laser scanning systems. In International Symposium on Mobile Mapping Technology

  54. Yin J, Shen J, Guan C, Zhou D, Yang R (2020) Lidar-based online 3d video object detection with graph-based message passing and spatiotemporal transformer attention. In Comput Vis Pattern Recognit, 2020. CVPR 2020

  55. Zhong L, Cheng L, Xu H, Wu Y, Chen Y, Li M (2016) Segmentation of individual trees from tls and mls data. IEEE J Sel Top Appl Earth Obs Remote Sens 10(2), 1–14

  56. Zhong R, Wei J, Su W, Chen YF (2013) A method for extracting trees from vehicle-borne laser scanning data. Math Comput Model 58(3–4):727–736

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Nos.61871320, 61872291); in part by National Key Research and Development Project of China (2018YFB1004905); in part by China Postdoctoral Science Foundation (2014M552469); in part by Key laboratory project of Shaanxi Provincial Education Department (17JS099); in part by Shaanxi Postdoctoral Science Foundation (434015014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojuan Ning.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, X., Tian, G. & Wang, Y. Shape classification guided method for automated extraction of urban trees from terrestrial laser scanning point clouds. Multimed Tools Appl 80, 33357–33375 (2021). https://doi.org/10.1007/s11042-021-11328-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11328-7

Keywords

Navigation