Skip to main content
Log in

Unet based Xception Model for Prostate Cancer Segmentation from MRI Images

  • 1218: Engineering Tools and Applications in Medical Imaging
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

One of the most prevalent forms of tumor found in males all over the world is prostate cancer. The main risk factors are age and family history. Magnetic Resonance Imaging (MRI) is highly recommended for detecting and localizing prostate cancer. It is very important for precise segmentation of the prostate region in MRI scans to improve the treatment possibilities and the chance of patient survival with prostate cancer. Manually segmenting the prostate region is a daunting task and often time-consuming because of the variation in shapes of prostates among patients, poor delineation of the boundary, and the use of different MRI modes. In this paper, we propose an automatic segmentation model for the prostate regions in MRI scans based on Unet and Xception net. To boost the performance of model, local residual connections are added in the decoder stage of the Unet. The empirical results are compared to different Unet based models with different preprocessing methods to assess the effectiveness of the proposed model. The experimentations are performed to support the fact that the proposed model performs better than other methods taken under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  3. Canziani A, Paszke A, Culurciello E (2016) “An Analysis of Deep Neural Network Models for Practical Applications”. arXiv preprint arXiv:1605.07678

  4. Cho C, Lee YH, Lee S (2017) Prostate detection and segmentation based on convolutional neural network and topological derivative. In: 2017 IEEE Int Conf Image Process (ICIP) 4452–4456. IEEE, Beijing

  5. Chollet F (2017) "Xception: Deep Learning with Depthwise Separable Convolutions." 2017 IEEE Conf Comput Vis Pattern Recognit (CVPR) 1800–1807. https://doi.org/10.1109/CVPR.2017.195

  6. Dorothy R, Joany RM, Rathish RJ, Prabha S, Rajendran S (2015) Image enhancement by Histogram equalization. Int J Nano Corros Sci Eng 2:21–30

    Google Scholar 

  7. Ghasab MAJ, Paplinski AP, Betts JM, Reynolds HM, Haworth A (2017) Automatic 3D modelling for prostate cancer brachytherapy. In: 2017 IEEE Int Conf Image Process (ICIP) 4452–4456. IEEE, Beijing

  8. Gillespie D, Kendrick C, Boon I, Boon C, Rattay T, Yap MH (2020) Deep learning in magnetic resonance prostate segmentation: A review and a new perspective. arXiv preprint arXiv:2011.07795

  9. Litjens G, Toth R, van de Ven W, Hoeks C, Kerkstra S, van Ginneken B, Vincent G, Guillard G, Birbeck N, Zhang J (2020) PROMISE12. Grand-Challenge Accessed on 28 June 2020 [Online]. Available: https://promise12.grand-challenge.org/

  10. He K, Zhang X, Ren S, Sun J (2016) “Deep residual learning for image recognition”. In Proc IEEE Conf Comput Vis Pattern Recognit 770–778

  11. He K, Zhang X, Ren S, Sun J (2016) "Deep Residual Learning for Image Recognition," IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), Las Vegas, NV 770–778. https://doi.org/10.1109/CVPR.2016.90

  12. Hossain MS, Paplinski AP, Betts JM (2018) Residual Semantic Segmentation of the Prostate from Magnetic Resonance Images. Int Conf Neural Inf Process 1307:510–521

    Google Scholar 

  13. Jia H, Xia Y, Song Y, Cai W, Fulham M, Feng DD (2017) “Prostate segmentation in MR images using ensemble deep convolutional neural networks”. IEEE Int Symp Biomed Imaging 762–765. https://doi.org/10.1109/isbi.2017.7950630

  14. Jia H, Xia Y, Song Y, Cai W, Fulham M, Feng DD (2018) Atlas registration and ensemble deep convolutional neural network-based prostate segmentation using magnetic resonance imaging. Neurocomputing 275:1358–1369

    Article  Google Scholar 

  15. Liao S, Gao Y, Oto A, Shen D (2013) "Representation Learning: A Unified Deep Learning Framework for Automatic Prostate MR Segmentation." In Adv Inf Syst Eng Lect Notes Comput Sci 254–261

  16. Liu X, Deng Z, Yang Y (2019) “Recent progress in semantic image segmentation”. In Artif Intell Revi 1089–1106

  17. Liu Q, Dou Q, Yu L, Heng HA (2020) "MS-Net: Multi-Site Network for Improving Prostate Segmentation with Heterogeneous MRI Data." In IEEE Trans Med Imaging. https://doi.org/10.1109/TMI.2020.2974574

  18. Litjens G, Toth R, Ven WVD, Hoeks C, Kerkstra S, Ginneken BV, Vincent G, Guillard G, Birbeck N, Zhang J, Strand R, Malmberg F, Ou Y, Davatzikos C, Kirschner M, Jung F, Yuan J, Qiu W, Gao Q, Edwards P, Maan B, Heijden FVD, Ghose S, Mitra J, Dowling J, Barratt D, Huisman H, Madabhushi A (2014) Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge. Med Image Anal 18:359–373

    Article  Google Scholar 

  19. Long J, Shelhamer E, Darrell T (2015) "Fully convolutional networks for semantic segmentation." 2015 IEEE Conf Comput Vis Pattern Recognit (CVPR) 3431–3440. https://doi.org/10.1109/CVPR.2015.7298965

  20. Milletari F, Navab N, Ahmadi S (2016) "V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation." In Fourth Int Conf 3D Vis (3DV) 565–571. https://doi.org/10.1109/3DV.2016.79

  21. Pereira S, Pinto A, Alves V, Silva CA (2016) Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images. IEEE Trans Med Imaging 35(5):1240–1251. https://doi.org/10.1109/TMI.2016.2538465

    Article  Google Scholar 

  22. Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, Romeny BTH, Zimmerman JB, Zuiderveld K (1987) Adaptive Histogram Equalization and Its Variations. Compu Vis Gr Image Process 39:355–368

    Article  Google Scholar 

  23. Ronneberger O, Fischer P, Brox T (2015) “U-Net: Convolutional Networks for Biomedical Image Segmentation”. In Med Image Comput Comput Assist Interv MICCAI 9351

  24. Song S, Zheng Y, He Y (2017) A Review of Methods for Bias Correction in Medical Images. Biomed Eng Rev 1(1):1–9

    Google Scholar 

  25. To MNN, Vu DQ, Turkbey B, Choyke PL, Kwak JT (2018) Deep dense multi-path neural network for prostate segmentation in magnetic resonance imaging. Int J Comput Assist Radiol Surg 13(11):1687–1696

    Article  Google Scholar 

  26. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: Improved N3 Bias Correction. IEEE Trans Med Imaging 29:1310–1320

    Article  Google Scholar 

  27. Vincent G, Guillard G, Bowes M (2012) “Fully Automatic Segmentation of the Prostate using Active Appearance Models”

  28. Yan P, Xu S, Turkbey B, Kruecker J (2010) Discrete deformable model guided by partial active shape model for TRUS image segmentation. IEEE Trans Biomed Eng 57(5):1158–1166

    Article  Google Scholar 

  29. Yoo S, Gujrathi I, Haider MA, Khalvati F (2019) Prostate Cancer Detection using Deep Convolutional Neural Networks. Sci Rep 9(1):19518. https://doi.org/10.1038/s41598-019-55972-4

    Article  Google Scholar 

  30. Yu L, Yang X, Chen H, Qin J, Heng PA (2017) Volumetric ConvNets with Mixed Residual Connections for Automated Prostate Segmentation from 3D MR Images. AAAI Conf Artif Intell 31:66–72

    Google Scholar 

  31. Zhang L, Li L, Tang M, Huan Y, Zhang X, Zhe X (2021) “A new approach to diagnosing prostate cancer through magnetic resonance imaging”. In Alex Eng J 60:897–904. https://doi.org/10.1016/j.aej.2020.10.018

  32. Zhou W, Tao X, Wei Z, Lin L (2019) “Automatic segmentation of 3D prostate MR images with iterative localization refinement”. In Digit Signal Process 98. https://doi.org/10.1016/j.dsp.2019.102649

  33. Zhu Q, Du B, Turkbey B, Choyke PL, Yan P (2017) "Deeply-supervised CNN for prostate segmentation." Int Joint Conf Neural Netw (IJCNN) 178–184. https://doi.org/10.1109/IJCNN.2017.7965852

Download references

Acknowledgment

The datasets used in this work formed part of the task of promise12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Purwar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chahal, E.S., Patel, A., Gupta, A. et al. Unet based Xception Model for Prostate Cancer Segmentation from MRI Images. Multimed Tools Appl 81, 37333–37349 (2022). https://doi.org/10.1007/s11042-021-11334-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11334-9

Keywords

Navigation