Skip to main content
Log in

Scene image classification based on visual words concatenation of local and global features

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present a novel framework for scene image classification, which depends on corresponding visual words concatenation of speeded up robust features (SURF) and Directional binary code (DBC) feature descriptor. Firstly, we use SURF feature descriptor as a local feature descriptor. The local feature descriptor captures very close visual appearance (distinct structure) among their visual contents representation of an image. Secondly, the DBC feature descriptor captures global features, where color-texture features are extracted from entire image. Then, visual words of local and global descriptors are build separately. The concatenated visual words are used to represent the training images and query image. The SVM classifier is used to classify training samples and a query image is classified based on the similarity between histograms of training samples and query image. We carried out experiments using the challenging scene datasets such as MIT scene, UIUC sports event, and MIT indoor scene datasets. The experimental results demonstrate that the proposed method outperforms compared to the existing scene image classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baig F, Mehmood Z, Rashid M, Javid MA, Rehman A, Saba T, Adnan A (2020) Boosting the performance of the BoVW model using SURF-CoHOG-based sparse features with relevance feedback for CBIR. Iran J Sci Technol Trans Electr Eng 44(1):99–118

    Article  Google Scholar 

  2. Banerji S et al (2013) New image descriptors based on color, texture, shape, and wavelets for object and scene image classification. Neurocomputing 117:173–185 https://doi.org/10.1016/j.neucom.2013.02.014

  3. Banerji S, Sinha A, Chengjun L (2013) New image descriptors based on color, texture, shape, and wavelets for object and scene image classification. Neurocomputing 117:173–185. https://doi.org/10.1016/j.neucom.2013.02.014

  4. Bay H, Tuytelaars T, Van Gool L (2008) SURF: Speeded up robust features. Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  5. Csurka G, Bray C, Dance C, Fan L (2004) Visual categorization with bags of keypoints. In: Workshop on Statistical Learning. ECCV Computer Vision, pp 1–22

  6. Douik A, Abdellaoui M, Kabbai L (2016) Content based image retrieval using local and global features descriptor. IEEE, International Conference on Advanced Technologies for Signal and Image Processing 151–154

  7. Fei-Fei L, Li LJ (2010) What, Where and Who? Telling the Story of an Image by Activity Classification, Scene Recognition and Object Categorization. In: Cipolla R, Battiato S, Farinella GM (eds) Computer Vision. Studies in Computational Intelligence, vol 285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12848-6_6

  8. Hassaballah M, Abdelmgeid A, Hammam, A (2010) Image features detection, description and matching. https://doi.org/10.1007/978-3-319-28854-3_2

  9. He N, Fang L, Li S, Plara A (2018) Covariance matrix based feature fusion for scene classification 3587–3590. https://doi.org/10.1109/IGARSS.2018.8517914

  10. Heikkila M, Pietikainen M (2006) A texture-based method for modeling the background and detecting moving objects. IEEE Trans Pattern Anal Mach Intell  28(4):657–662

  11. Heikkila M, Pietikainen M, Schmid C (2009) Description of interest regions with local binarypatterns. Pattern Recogn 42(3):425–436

    Article  Google Scholar 

  12. Hiremath P, Pujari J (2007) Content based image retrieval using color, texture and shape features. In Int Conf on Advanced Computing and Communications. IEEE, pp 780–784

  13. Jalab H (2011) Image retrieval system based on color layout descriptor and Gabor filters. In: IEEE Conference on Open Systems, ICOS 2011, pp 32–36. https://doi.org/10.1109/ICOS.2011.6079266

  14. Kabbai L, Douik A, Abdellaoui M (2016) Content based image retrieval using local and global features descriptor.  international conference on advanced Technologies for Signal and Image Processing , IEEE, pp 151–154

  15. Kabbai L, Abdellaoui M, Douik A (2019) Image classification by combining local and global features. Vis Comput 35(5):679–693

    Article  Google Scholar 

  16. Kaljahi MA, Palaiahnakote S, Anisi MH et al (2019) A scene image classification technique for a ubiquitous visual surveillance system. Multimed Tools Appl 5791–5818. https://doi.org/10.1007/s11042-018-6151-x

  17. Kim KI, Jung K, Park SH, Kim HJ (2002) Support vector machines for texture classification. IEEE Trans Pattern Anal Mach Intell 24:1542–1550

    Article  Google Scholar 

  18. Li LJ, Li FF (2009) What, where and who? Classifying events by scene and object recognition. In: IEEE International Conference on Computer Vision. pp 1–8

  19. Liu S, Tian G (2019) An Indoor Scene Classification Method for Service Robot Based on CNN Feature. J Robot 2019. https://doi.org/10.1155/2019/8591035

  20. Ma J, Ma Z, Kang B, Lu K (2014) A method of protein model classification and retrieval using bag-of-visual-features. Comput Math Methods Med. https://doi.org/10.1155/2014/269394

  21. Nagaraja S, Prabhakar CJ (2015) Low-level features for image retrieval based on extraction of directional binary patterns and its oriented gradients histogram. Computer Applications: An International Journal 2:13–28

  22. Oliva A, Torralba A (2009) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vision 42(3):145–175

    Article  Google Scholar 

  23. Qin J, Yung NHC (2010) Scene categorization via contextual visual words. Pattern Recognit 43(5):1874–1888

    Article  Google Scholar 

  24. Quattoni A,  Torralba A (2009) Recognizing indoor scenes. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 413–420

  25. Rahman M, Rahman S, Rahman R et al (2017) DTCTH: a discriminative local pattern descriptor for image classification. J Image Video Proc. https://doi.org/10.1186/s13640-017-0178-1

    Article  Google Scholar 

  26. Rasiwasia N, Vasconcelos N (2016) Latent Dirichlet allocation models for image classification. IEEE Trans PAMI 35(11):2665–2679

    Article  Google Scholar 

  27. Shawe-Taylor J (2009) Kernel methods and support vector machines. Lecture Notes

  28. Siagian C, Itti, L (2007) Rapid biologically-inspired scene classification using features shared with visual attention. IEEE Trans Pattern Anal Mach Intell 29(2):300–312. https://doi.org/10.1109/TPAMI.2007.40

  29. Sleit A, Abu Dalhoum A, Qatawneh M, Al-Sharief M, Al-Jabaly R, Karajeh O (2011) Image clustering using color, texture and shape features. KSII Trans Internet Inf Syst 5:211–227. https://doi.org/10.3837/tiis.2011.01.012

  30. Thontadari C, Prabhakar CJ (2017) Bag of visual words for word spotting in handwritten documents based on curvature features. Int J Comput Sci Inf Technol Res. https://doi.org/10.5121/ijcsit.2017.9406

  31. Tsai CF (2012) Bag-of-words representation in image annotation: A review. International Scholarly Research Notices, Artificial Intelligence

  32. Văduva C, Gavăt I, Datcu M (2013) Latent Dirichlet allocation for spatial analysis of satellite images. IEEE Trans Geosci Remote Sens 51(5):2770–2786

    Article  Google Scholar 

  33. Vailaya A, Figueiredo A, Jain A, Zhang H (2001) Image classification for content-based indexing. IEEE Trans Image Process 117–129

  34. van de Sande KE, Gevers T, Snoek CG (2011) Empowering visual categorization with the GPU. IEEE Trans Multimedia 13(1):60–70

    Article  Google Scholar 

  35. Watanabe K, Liu S, Tian G (2019). An indoor scene classification method for service robot Based on CNN feature. Journal of Robotics, 2019

  36. Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification. IEEE Conf Comput Vis Pattern Recognit 1794–1801

  37. Zhong Y, Zhu Q, Zhang L (2015) Scene classification based on the multi feature fusion probabilistic topic model for high spatial resolution remote sensing imagery. IEEE Trans Geosci Remote Sens 1–16

  38. Zou J, Li W, Chen C, Du Q (2016) Scene classification using local and global features with collaborative representation. Inf Sci 100(348):209–226

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakar C J.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrinivasa S R, Prabhakar C J Scene image classification based on visual words concatenation of local and global features. Multimed Tools Appl 81, 1237–1256 (2022). https://doi.org/10.1007/s11042-021-11354-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11354-5

Keywords

Navigation