Skip to main content
Log in

A string matching based ultra-low complexity lossless screen content coding technique

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Screen contents have become a popular image type driven by the growing market for transferring display screen between devices, especially mobile devices. Due to the ultra-high quality display featured in most of nowadays mobile devices, lossless screen content coding (SCC) is usually required or preferred. Mobile devices also require ultra-low power consumption in all tasks including SCC. To address these issues, this paper proposes an ultra-low coding complexity technique based on string matching for high efficiency lossless SCC. The technique covers three major coding phases of fast searching, prediction, and entropy coding. Condensed hash table (CHT) based fast searching is proposed to speed-up reference string searching process. Coplanar prediction (CP) and predictor-dependent residual (PDR) are presented to first efficiently predict an unmatchable pixel using multiple neighboring pixels and then further reduce the entropy of prediction residuals. To achieve a good trade-off between coding complexity and efficiency, 4-bit-aligned variable length code (4bVLC) and byte-aligned multi-variable-length-code (BMVLC) are proposed to code the prediction residuals and three string matching parameters, respectively. For 184 screen content images commonly used, compared with X265 and PNG in the default configuration and lossless mode, the proposed technique achieves 35.67% less total compressed bytes with only 0.96% encoding and 1.54% decoding runtime, and 10.04% less total compressed bytes with only 6.83% encoding and 24.32% decoding runtime, respectively. The proposed technique also outperforms X265 and PNG in all other configurations. For twelve HEVC-SCC CTC images, compared with PNG in fast, default and slow configurations and X265 in ultrafast and default configurations, the proposed technique shows significant advantage with both high coding efficiency and ultra-low coding complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdoli M, Henry F, Brault P et al (2018) Short-distance intra prediction of screen content in versatile video coding (VVC). IEEE Signal Process Lett 25(11):1690–1694

    Article  Google Scholar 

  2. Baroncini V, Ferrara S, Ye Y (2018) Call for Proposals for Low Complexity Video Coding Enhancements. ISO/IEC JTC1/SC29/WG11, N17944

  3. Beyond HEVC: Versatile Video Coding project starts strongly in Joint Video Experts Team [Online]. http://news.itu.int/versatile-video-coding-project-starts-strongly/. Accessed 3 Sep 2020

  4. Bossen F, Li X, Suehring K (2019) AHG report: Test model software development (AHG3). JVET Doc JVET-P0003

  5. Deutsch P (1996) DEFLATE Compressed Data Format Specification version 1.3 [Online], http://www.ietf.org/rfc/rfc1951.txt. Accessed 30 Jul 2021

  6. Deutsch PL, Gailly JL (1996) ZLIB Compressed Data Format Specification version 3.3. RFC 1950

  7. Guo LW, Pu W, Zou F et al (2014) Color palette for screen content coding. IEEE International Conference on Image Processing (ICIP), pp. 5556–5560

  8. Guo L, Cock JD, Aaron A (2018) Compression Performance Comparison of x264, X265, libvpx and aomenc for On-Demand Adaptive Streaming Applications. IEEE Picture Coding Symposium, pp. 26–30

  9. Lan CL, Xu JZ, Zeng WJ et al (2015) Compound image compression using lossless and lossy LZMA in HEVC. IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6

  10. Lei JJ, Li DY, Pan ZM et al (2017) Fast intra prediction based on content property analysis for low complexity HEVC-based screen content coding. IEEE Trans Broadcast 63(1):48–58

    Article  Google Scholar 

  11. Li B, Xu J, Sullivan GJ (2015) Comparison of Compression Performance of HEVC Screen Content Coding Extensions Test Model 5 with AVC High 4:4:4 Predictive profile. JCTVC Doc JCTVC-V0033

  12. Lin T, Yang YF (2019) Offset rotation mapping algorithm based on string matching for screen content coding. J Jishou Univ 40(3):28–32

    Google Scholar 

  13. Lin T, Zhang PJ, Wang SH et al (2013) Mixed chroma sampling-rate high efficiency video coding for full-chroma screen content. IEEE Trans Circuits Syst Video Technol 23(1):173–185

    Article  Google Scholar 

  14. Lin T, Cai WT, Chen XY et al (2017) Lossless compression algorithm based on string matching with high performance and low complexity for screen content coding. J Electron Inf Technol 39(2):351–359

    Google Scholar 

  15. Lin T, Zhang DY, Zhao LP (2019) An improved entropy coding algorithm in string matching based on alpha image coding. J Jishou Univ 40(1):57–60

    Google Scholar 

  16. Liu WQ, Mei FQ, Wang CH et al (2018) Data compression device based on modified LZ4 algorithm. IEEE Trans Consum Electron 64(1):110–117

    Article  Google Scholar 

  17. Luo F, Ma S (2017) The demand V1.0 for the new generation of AVS video coding technology. AVS N2495

  18. Peng WH, Walls FG, Cohen RA, Xu JZ, Ostermann J, MacInnis A, Lin T (2016) Overview of screen content video coding technologies, standards, and beyond. IEEE J Emerg Sel Topics Circuits Syst 6(4):393–408

    Article  Google Scholar 

  19. Requirements for Future Extensions of HEVC in Coding Screen Content, ISO/IEC JTC1/SC29/WG11, N14174, 2014

  20. Richter T, Keinert J, Descampe A et al (2018) Entropy Coding and Entropy Coding Improvements of JPEG XS. 2018 Data Compression Conference, pp. 87–96

  21. Schalnat GE, Dilger A, Truta C (2020) Libpng [Online]. http://www.libpng.org/pub/png/libpng.html. Accessed 4 Sep 2020

  22. Segall A, Baroncini V, Boyce J et al (2017) Joint Call for Proposals on Video Compression with Capability beyond HEVC. JVET Doc JVET-H1002

  23. Strutz T, Möller P (2020) Screen content compression based on enhanced soft context formation. IEEE Trans Multimed 22(5):1126–1138

    Article  Google Scholar 

  24. Sullivan GJ, Boyce JM, Chen Y et al (2013) Standardized extensions of high efficiency video coding(HEVC). IEEE J Sel Topics Signal Process 7(6):1001–1016

    Article  Google Scholar 

  25. Strutz T (2020) Enhanced soft context formation [Online]. http://www1.hft-leipzig.de/strutz/Papers/SCFenhanced-resources/. Accessed 2 Sep 2020

  26. Sullivan G, Boyce J, Wiegand T (2017) Requirement for Future Video Coding(FVC). VCEG Doc VCEG-BD03

  27. Tsang SH, Chan YL, Kuang W et al (2019) Reduced-complexity intra block copy (IntraBC) mode with early CU splitting and pruning for HEVC screen content coding. IEEE Trans Multimed 21(2):269–283

    Article  Google Scholar 

  28. Wang SH, Lin T (2014) United coding method for compound image compression. Multimed Tools Appl 71(3):1263–1282

    Article  Google Scholar 

  29. Wang SH, Lin T, Zhou KL et al (2015) Pseudo-2D-matching based enhancement to high efficiency video coding for screen contents. Multimed Tools Appl 74(18):7753–7771

    Article  Google Scholar 

  30. Wang SQ, Zhang XF, Liu XM et al (2017) Utility-driven adaptive preprocessing for screen content video compression. IEEE Trans Multimed 19(3):660–667

    Article  Google Scholar 

  31. Xiao W, Shi GM, Li B et al (2018) Fast hash-based inter-block matching for screen content coding. IEEE Trans Circuits Syst Video Technol 28(5):1169–1182

    Article  Google Scholar 

  32. Xu M, Ma Z, Wang W, Wang X and Yu H (2014) Low-complexity dictionary based lossless screen content coding. 2014 IEEE International Conference on Image Processing (ICIP), pp. 3200–3203

  33. Xu JZ, Joshi R, Cohen RA (2015) Overview of the emerging HEVC screen content coding extension. IEEE Trans Circuits Syst Video Technol 26(1):50–62

    Article  Google Scholar 

  34. Xu XZ, Liu S, Chuang TD et al (2016) Intra block copy in HEVC screen content coding extensions. IEEE J Emerg Sel Topics Circuits Syst 6(4):409–419

    Article  Google Scholar 

  35. Yu HP, Cohen R, Rapaka K et al (2015) Common Test Conditions for Screen Content Coding. JCT-VC doc JCTVC-U1015

  36. Zhao LP, Lin T, Zhou KL et al (2016) Pseudo 2D string matching technique for high efficiency screen content coding. IEEE Trans Multimed 18(3):339–350

    Article  Google Scholar 

  37. Zhao LP, Lin T, Zhou KL et al (2017) An efficient ISC offset parameter coding algorithm in screen content coding. Chin J Comput 40(5):1218–1228

    Google Scholar 

  38. Zhao LP, Zhou KL, Guo J et al (2018) A universal string matching approach to screen content coding. IEEE Trans Multimed 20(4):796–809

    Article  Google Scholar 

  39. Zhao LP, Zhou KL, Guo J et al (2018) Pixel string matching for full-chroma screen and mixed content coding in AVS2. Chin J Comput 41(11):2482–2495

    Google Scholar 

  40. Zhao LP, Lin T, Zhou KL (2018) A byte-size multi-variable-length-code based string matching algorithm for alpha image coding. Telecommun Sci 34(11):96–104

    Google Scholar 

  41. Zhao LP, Zhou KL, Lin T et al (2019) A Universal string prediction approach and its application in AVS2 mixed content coding. Chin J Comput 42(9):2100–2113

    Google Scholar 

  42. Zhao LP, Lin T, Guo J et al (2019) Universal string prediction-based inter coding algorithm optimization in AVS2 mixed content coding. Chin J Comput 42(10):2190–2202

    Google Scholar 

  43. Zhao LP, Lin T, Zhang DY et al (2020) An ultra-low complexity and high efficiency approach for lossless alpha channel coding. Trans Multimedia 22(3):786–794

    Article  Google Scholar 

  44. Zhou KL, Zhao LP, Lin T (2018) A flexible and uniform string matching technique for general screen content coding. Multimed Tools Appl 77:23751–23775

    Article  Google Scholar 

  45. Zhu WJ, Ding WP, Xu JZ et al (2015) Hash-based block matching for screen content coding. IEEE Trans Multimed 17(7):935–944

    Article  Google Scholar 

  46. Ziv J, Lempel A (1977) A universal algorithm for sequential data compression. IEEE Trans Inf Theory 23(3):337–343

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Zhejiang Province (Grant No. LY19F020015), the National Science Foundation of China (Grant No. 61871289), the Public Service Technology Application Research Project of Shaoxing city (Grant No. 2018C10015), the Natural Science Foundation of Shanghai (Grant Nos. 18ZR1440600, 19ZR1461100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Zhao or Kailun Zhou.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Lin, T., Zhao, L. et al. A string matching based ultra-low complexity lossless screen content coding technique. Multimed Tools Appl 81, 2043–2063 (2022). https://doi.org/10.1007/s11042-021-11418-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11418-6

Keywords

Navigation