Skip to main content
Log in

Hybrid framework for identifying partial latent fingerprints using minutiae points and pores

  • 1205: Emerging Technologies for Information Hiding and Forensics in Multimedia Systems
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Latent fingerprints play a pivotal role in the forensics for the investigation of the crimes. Mostly, latent fingerprints found at the crime scene are partial prints. Thus, fingerprint features required for identifying the latent fingerprint is not always available. Approaches for reconstructing the partial latent fingerprints to fill the missing area is highly probabilistic. As a result, numerous false features may be extracted during feature extraction, which can affect the identification accuracy. Thus, the paper aims to propose a hybrid framework for identifying partial latent fingerprints using minutiae points (level 2) and pores (level 3), which could increase the identification accuracy. Results are evaluated on the CSRC Latent Fingerprint Touch-less Database created using Reflected Ultra Violet Imaging System (RUVIS), which shows improvement in the Rank-k identification accuracy when similarity scores of both minutiae and pores are combined. Moreover, an analysis of the identification accuracy for the number of minutiae points available in the partial latent fingerprints shows that pores could help in identifying partial latent fingerprints that have less than 5 minutiae points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not Applicable.

Code availability

Not Applicable.

Abbreviations

CSRC:

Cyber Security Research Centre

RUVIS:

Reflected Ultra Violet Imaging System

AFIS:

Automatic Fingerprint Identification System

GAN:

Generative Adversarial Network

NIST SD27:

National Institute of Standards and Technology Special Database 27

ELFT-EFS-PC:

Evaluation of Latent Fingerprint Technologies—Extended Feature Sets—Public Challenge

WVU:

West Virginia University

IIIT-D:

Indraprastha Institute of Information Technology Delhi

SLF:

Simultaneous Latent Fingerprint

FVC:

Fingerprint Verification Competition

COTS:

Commercial Off-the-shelf

DRP:

Distinctive Ridge Point

CNN:

Convolutional Neural Network

EF:

Exemplar Fingerprints

PLF:

Partial Latent Fingerprints

PIL:

Python Imaging Library

FCN:

Fully Convolution Neural Network

SIFT:

Scale Invariant Feature Transform

PolyU HRF:

Polytechnic University High-Resolution-Fingerprint

CMC:

Cumulative Matching Curve

References

  1. Anthonioz A, Egli NM, Champod C, Neumann C, Puch-Solis R, Bromage-Griffiths A (2008) Level 3 details and their role in fingerprint identification: a survey among practitioners. JFI 58(5):562–589

    Google Scholar 

  2. Cao K, Jain AK (2019) Automated latent fingerprint recognition. IEEE Trans Pattern Anal Mach Intell 41(4):788–800. https://doi.org/10.1109/TPAMI.2018.2818162

    Article  Google Scholar 

  3. Castillo-Rosado K, Hernández-Palancar J (2019) Latent fingerprint matching using distinctive ridge points. Informatica 30(3):431–454. https://doi.org/10.15388/Informatica.2019.213

    Article  MathSciNet  Google Scholar 

  4. Dabouei A, Kazemi H, Iranmanesh SM, Dawson J, Nasrabadi NM (2018) ID preserving generative adversarial network for partial latent fingerprint reconstruction. In: IEEE 9th international conference on biometrics theory, applications and systems (BTAS)

  5. Dahia G, Segundo MP (2018) Improving fingerprint pore detection with a small FCN. arXiv preprint arXiv:1811.06846

  6. de Assis Angeloni M, Marana AN (2013) Improving the ridge based fingerprint recognition method using sweat pores. In: Proceedings of the seventh international conference on digital society, Nice, France. https://doi.org/10.13140/2.1.4157.9524

  7. Deshpande UU, Malemath VS, Patil SM, Chaugule SV (2020) CNNAI: a convolution neural network-based latent fingerprint matching using the combination of nearest neighbor arrangement indexing. Front Robot AI. https://doi.org/10.3389/frobt.2020.00113

    Article  Google Scholar 

  8. Feng J, Jain AK (2011) Fingerprint reconstruction: from minutiae to phase. IEEE Trans Pattern Anal Mach Intell 33(2):209–223. https://doi.org/10.1109/TPAMI.2010.77

    Article  Google Scholar 

  9. Feng J, Yoon S, Jain AK (2009) Latent fingerprint matching: fusion of rolled and plain fingerprints. In: International conference on biometrics, Springer, Berlin, Heidelberg, pp 695–704. https://doi.org/10.1007/978-3-642-01793-3_71

  10. Fingerprint Verification Competition, FVC2002. http://bias.csr.unibo.it/fvc2002/databases.asp

  11. Garris MD, McCable RM (2000) NIST special database 27 fingerprint minutiae from latent and matching tenprint images. Tech. Rep. NISTIR 6534

  12. Indovina M, Hicklin A (2010) ELFT-EFS NIST evaluation of latent fingerprint technologies: extended feature sets. Evaluation #1, Preliminary Report

  13. Integrated pattern recognition and biometrics lab, West Virginia University. https://biic.wvu.edu/data-sets

  14. Jain AK, Nandakumar K, Ross A (2005) Score normalization in multimodal biometric systems. Pattern Recogn 38(12):2270–2285. https://doi.org/10.1016/j.patcog.2005.01.012

    Article  Google Scholar 

  15. Jain AK, Chen Y, Demirkus M (2007) Pores and ridges: high-resolution fingerprint matching using level 3 features. IEEE Trans Pattern Anal Mach Intell 29(1):15–27

    Article  Google Scholar 

  16. Jain AK, Feng J, Nagar A, Nandakumar K (2008) On matching latent fingerprints. In: IEEE computer society conference on computer vision and pattern recognition workshops, Anchorage, AK, USA, pp 1–8. https://doi.org/10.1109/CVPRW.2008.4563117

  17. Jianjiang F, Zhou J, Jain AK (2013) Orientation field estimation for latent fingerprint enhancement. IEEE Trans Pattern Anal Mach Intell 35(4):925–940. https://doi.org/10.1109/TPAMI.2012.155

    Article  Google Scholar 

  18. Kumar S, Velusamy RL (2015) Latent fingerprint preprocessing: orientation field correction using region wise dictionary. In: International conference on advances in computing, communications and informatics, pp 1238–1243. https://doi.org/10.1109/ICACCI.201

  19. Lei Z (2009) The Hong Kong Polytechnic University (PolyU) high-resolution fingerprint (HRF) database. http://www4.comp.polyu.edu.hk/~biometrics/HRF/HRF_old.htm

  20. Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE international conference on computer vision, Kerkyra, Greece, vol 2, pp 1150–1157. https://doi.org/10.1109/ICCV.1999.790410

  21. Loyola-González O, Ferreira Mehnert EF, Morales A, Fierrez J, Medina-Pérez MA, Monroy R (2021) Impact of minutiae errors in latent fingerprint identification: assessment and prediction. Appl Sci 11(9):4187. https://doi.org/10.3390/app11094187

    Article  Google Scholar 

  22. Maltoni D, Maio D, Jain AK, Prabhakar S (2009) Handbook of fingerprint recognition, 2nd edn. Springer, London

    Book  Google Scholar 

  23. Neurotechnology, VeriFinger SDK. http://www.neurotechnology.com/verifinger.html

  24. Nguyen DL, Jain AK (2019) End-to-end pore extraction and matching in latent fingerprints: going beyond minutiae, pp 1–10. http://arxiv.org/abs/1905.11472v2

  25. Paulino AA, Jain AK (2013) Latent fingerprint matching using descriptor-based hough transform. IEEE Trans Inf Forensics Secur 8(1):31–45. https://doi.org/10.1109/TIFS.2012.2223678

    Article  Google Scholar 

  26. Paulino AA, Jain AK, Feng J (2010) Latent fingerprint matching: fusion of manually marked and derived minutiae. In: Proceedings—23rd SIBGRAPI conference on graphics, patterns and images, IEEE, Gramado, Brazil, pp 63–70. https://doi.org/10.1109/SIBGRAPI.2010.17

  27. Rahmes M, Allen JD, Elharti A, Tenali GB (2007) Fingerprint reconstruction method using partial differential equation and exemplar-based inpainting methods. Biometrics symposium, Baltimore, MD, pp 1–6. https://doi.org/10.1109/BCC.2007.4430539

  28. Sankaran A, Dhamecha TI, Vatsa M, Singh R (2011) On matching latent to latent fingerprints. In: International joint conference on biometrics (IJCB). IEEE, Washington, DC, USA, pp 1–6. https://doi.org/10.1109/IJCB.2011.6117525

  29. Sankaran A, Vatsa M, Singh R (2012) Hierarchical fusion for matching simultaneous latent fingerprint. In: IEEE fifth international conference on biometrics: theory, applications and systems (BTAS), Arlington, VA, USA, pp 377–382. https://doi.org/10.1109/BTAS.2012.6374604

  30. Segundo MP, Lemes RDP (2015) Pore-based ridge reconstruction for fingerprint recognition. In: IEEE conference on computer vision and pattern recognition workshops (CVPRW), Boston, MA, 128–133. https://doi.org/10.1109/CVPRW.2015.7301328

  31. Singla N, Kaur M, Sofat S (2020) Automated latent fingerprint identification system: a review. Forensic Sci Int 309:110187. https://doi.org/10.1016/j.forsciint.2020.110187

    Article  Google Scholar 

  32. Singla N, Kaur M, Sofat S (2020) Latent fingerprint database using reflected ultra violet imaging system. Procedia Comput Sci 167:942–951. https://doi.org/10.1016/j.procs.2020.03.393

    Article  Google Scholar 

  33. Svoboda J, Monti F, Bronstein MM (2017) Generative convolutional networks for latent fingerprint reconstruction. In: IEEE international joint conference on biometrics (IJCB), Denver, CO, pp 429–436. https://doi.org/10.1109/BTAS.2017.8272727

  34. Wyzykowski ABV, Segundo MP, Lemes RDP (2020) Level three synthetic fingerprint generation. arXiv preprint arXiv:2002.03809

  35. Yamashita B, French M, Bleay S, Cantu A, Inlow V, Ramotowski R, Sears V, Wakefield M (2010) Latent print development, the fingerprint sourcebook (Chapter 7), pp 1–67

  36. Yang X, Feng J, Zhou J (2014) Localized dictionaries based orientation field estimation for latent fingerprints. IEEE Trans Pattern Anal Mach Intell 36(5):955–969. https://doi.org/10.1109/TPAMI.2013.184

    Article  Google Scholar 

  37. Yusof RM, Sulaiman N (2012) Multi-probes fusion framework for matching simultaneous latent impressions. In: International conference for internet technology and secured transactions, London, UK, pp 564–567

  38. Zanganeh O, Srinivasan B, Bhattacharjee N (2014) Partial fingerprint matching through region-based similarity. In: International conference on digital image computing: techniques and applications. IEEE, Wollongong, NSW, Australia, pp 1–8. https://doi.org/10.1109/DICTA.2014.7008121

  39. Zhao Q, Feng J, Jain AK (2010) Latent fingerprint matching: utility of level 3 features, Tech. Rep.

  40. Zhao Q, Zhang L, Zhang D, Luo N (2009) Direct pore matching for fingerprint recognition. Advances in biometrics. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, vol 5558, pp 597–606. https://doi.org/10.1007/9783-642-01793-3_61

  41. Zheng F, Yang C (2015) Latent fingerprint match using Minutia Spherical Coordinate Code. In: Proceedings of 2015 international conference on biometrics. IEEE, Phuket, Thailand, pp 357–362. https://doi.org/10.1109/ICB.2015.7139061

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Singla.

Ethics declarations

Conflict of interest

Not Applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singla, N., Kaur, M. & Sofat, S. Hybrid framework for identifying partial latent fingerprints using minutiae points and pores. Multimed Tools Appl 81, 19525–19542 (2022). https://doi.org/10.1007/s11042-021-11541-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11541-4

Keywords

Navigation