Skip to main content
Log in

A real time cloud-based framework for glaucoma screening using EfficientNet

  • 1174: Futuristic Trends and Innovations in Multimedia Systems Using Big Data, IoT and Cloud Technologies (FTIMS)
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

These days one of the major causes of partial or complete blindness that has affected a majority of people all around the world is glaucoma. Glaucoma is caused as a result of increased fluid pressure inside the optic nerves called intra ocular pressure. A real time cloud-based framework for screening the glaucoma suspect’s retinal fundus images as received by the people on the public cloud, is proposed in this paper. In the proposed framework the existence of glaucoma and analysis of the retinal fundus images is achieved by deep learning technique and convolutional neural network respectively. EfficientNet and UNet++ models are used to identify the presence of glaucoma. On comparing our framework to various state-of-the-art models and quantitative assessment are performing on various benchmark datasets like RIM-ONE and DRISHTI-GS1, it was found that the proposed framework is scalable, location independent, and easily accessible to one and all due to the cloud platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abdel-Hamid L (2020) Glaucoma detection from retinal images using statistical and textural wavelet features. J Digit Imaging 33(1):151–158

    Article  Google Scholar 

  2. Abdullah M, Fraz MM, Barman SA (2016) Localization and segmentation of optic disc in retinal images using circular Hough transform and grow-cut algorithm. PeerJ 4:e2003

    Article  Google Scholar 

  3. Aguilar-Rivera M, Erudaitius DT, Wu VM, Tantiongloc JC, Kang DY, Coleman TP et al (2020) Smart electronic eyedrop bottle for unobtrusive monitoring of glaucoma medication adherence. Sensors 20(9):2570

    Article  Google Scholar 

  4. Al-Bander B, Al-Nuaimy W, Al-Taee MA, Zheng Y (2017) Automated glaucoma diagnosis using deep learning approach. In: 2017 14th International multi-conference on systems, signals devices (SSD). IEEE, Marrakech, pp 207–210

    Chapter  Google Scholar 

  5. Almazroa A, Alodhayb S, Raahemifar K, Lakshminarayanan V (2017) Optic cup segmentation: type-II fuzzy thresholding approach and blood vessel extraction. Clin Ophthalmol (Auckland, NZ) 11:841

    Article  Google Scholar 

  6. Arnay R, Fumero F, Sigut J (2017) Ant colony optimization-based method for optic cup segmentation in retinal images. Appl Soft Comput 52:409–417

    Article  Google Scholar 

  7. Bharkad S (2017) Automatic segmentation of optic disk in retinal images. Biomed Signal Process Control 31:483–498

    Article  Google Scholar 

  8. Chen X, Xu Y, Yan S, Wong DW, Wong TY, Liu J (2015) Automatic feature learning for glaucoma detection based on deep learning. In: International conference on medical image computing and computer-assisted intervention 2015 Oct 5. Springer, Cham, pp 669–677

    Google Scholar 

  9. Chen X, Xu Y, Wong DW, Wong TY, Liu J (2015) Glaucoma detection based on deep convolutional neural network. In: Engineering in medicine and biology society (EMBC), 2015 37th annual international conference of the IEEE 2015 Aug 25. IEEE, Milan, pp 715–718

    Google Scholar 

  10. Chen X, Xu Y, Wong DWK, Wong TY, Liu J (2015) Glaucoma detection based on deep convolutional neural network. In: 2015 37th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, Milan, pp 715–718

    Chapter  Google Scholar 

  11. Chrastek R, Niemann H, Kubecka L, Jan J, Derhartunian V, Michelson G (2005) Optic nerve head segmentation in multimodal retinal images. In: Medical imaging 2005: image processing, vol 5747. International Society for Optics and Photonics, Bellingham, pp 1604–1615

    Chapter  Google Scholar 

  12. Christopher M, Belghith A, Bowd C, Proudfoot JA, Goldbaum MH, Weinreb RN, Girkin CA, Liebmann JM, Zangwill LM (2018) Performance of deep learning architectures and transfer learning for detecting glaucomatous optic neuropathy in fundus photographs. Sci Rep 8(1):16685

    Article  Google Scholar 

  13. Fu H, Cheng J, Xu Y, Zhang C, Wong DWK, Liu J, Cao X (2018) Disc-aware ensemble network for glaucoma screening from fundus image. IEEE Trans Med Imaging 37(11):2493–2501

    Article  Google Scholar 

  14. Fumero F, Alayón S, Sanchez JL, Sigut J, Gonzalez-Hernandez M (2011) RIM-ONE: an open retinal image database for optic nerve evaluation. In: 2011 24th international symposium on computer-based medical systems (CBMS). IEEE, Bristol, pp 1–6

    Google Scholar 

  15. Gupta N, Jalal AS (2019) Integration of textual cues for fine-grained image captioning using deep CNN and LSTM. Neural Comput Appl 32:17899

    Article  Google Scholar 

  16. Gupta N, Jalal AS (2019) A robust model for salient text detection in natural scene images using MSER feature detector and Grabcut. Multimed Tools Appl 78(8):10821–10835

    Article  Google Scholar 

  17. Gupta N, Garg H, Agarwal R (2021) A robust framework for glaucoma detection using CLAHE and EfficientNet. Vis Comput. https://doi.org/10.1007/s00371-021-02114-5

    Article  Google Scholar 

  18. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, Piscataway, pp 770–778

    Google Scholar 

  19. Juneja M, Singh S, Agarwal N, Bali S, Gupta S, Thakur N, Jindal P (2019) Automated detection of glaucoma using deep learning convolution network (G-net). Multimed Tools Appl 79:15531

    Article  Google Scholar 

  20. Kande GB, Subbaiah PV, Savithri TS (2008) Segmentation of exudates and optic disk in retinal images. In: Computer vision, graphics & image processing. ICVGIP’08. Sixth Indian conference on 2008 Dec 16. IEEE, Bhubaneswar, pp 535–542

    Chapter  Google Scholar 

  21. Li H, Chutatape O (2003) A model-based approach for automated feature extraction in fundus images. In: Null. IEEE, Nice

    Google Scholar 

  22. Li Z, He Y, Keel S, Meng W, Chang RT, He M (2018) Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology 125(8):1199–1206

    Article  Google Scholar 

  23. Liu SP, Chen J (2011) Detection of the optic disc on retinal fluorescein angiograms. J Med Biol Eng 31(6):405–412

    Article  Google Scholar 

  24. Lowell J, Hunter A, Steel D, Basu A, Ryder R, Fletcher E, Kennedy L (2004) Optic nerve head segmentation. IEEE Trans Med Imaging 23(2):256–264

    Article  Google Scholar 

  25. Lu S (2011) Accurate and efficient optic disc detection and segmentation by a circular transformation. IEEE Trans Med Imag 30(12):2126–2133

    Article  Google Scholar 

  26. Mehdizadeh M, Dolatyar S (2009) Study of effect of adaptive histogram equalization on image quality in digital preapical image in pre apex area. J Biol Sci 4(8):922–924

    Google Scholar 

  27. Ortega M, Barreira N, Novo J, Penedo MG, Pose-Reino A, Gomez-Ulla F (2010) Sirius: a web-based system for retinal image analysis. Int J Med Inform 79(10):722–732

    Article  Google Scholar 

  28. Owoyemi A, Owoyemi J, Osiyemi A, Boyd A (2020) Artificial intelligence for healthcare in Africa. Front Digit Health 2:6

    Article  Google Scholar 

  29. Palaniappan K, Bunyak F, Chaurasia SS (2019) Image analysis for ophthalmology: segmentation and quantification of retinal vascular systems. In: Guidoboni G, Harris A, Sacco R (eds) Ocular fluid dynamics. Modeling and simulation in science, engineering and technology. Birkhäuser, Cham

    Google Scholar 

  30. Pallawala P, Hsu W, Lee ML, Eong KGA (2004) Automated optic disc localization and contour detection using ellipse fitting and wavelet transform. ECCV. Springer, Berlin, Heidelberg, pp 139–151

    Google Scholar 

  31. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90(3):262–267

    Article  Google Scholar 

  32. Rosenthal A, Mork P, Li MH, Stanford J, Koester D, Reynolds P (2010) Cloud computing: a new business paradigm for biomedical information sharing. J Biomed Inform 43(2):342–353

    Article  Google Scholar 

  33. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vision 115(3):211–252

    Article  MathSciNet  Google Scholar 

  34. Shibata N, Tanito M, Mitsuhashi K, Fujino Y, Matsuura M, Murata H, Asaoka R (2018) Development of a deep residual learning algorithm to screen for glaucoma from fundus photography. Sci Rep 8(1):14665

    Article  Google Scholar 

  35. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  36. Singh LK, Garg H (2019) Detection of glaucoma in retinal fundus images using fast fuzzy C means clustering approach. In: 2019 International conference on computing, communication, and intelligent systems (ICCCIS). IEEE, Greater Noida, pp 397–403

    Chapter  Google Scholar 

  37. Singh LK, Garg H (2020) Automated glaucoma type identification using machine learning or deep learning techniques. In: Advancement of machine intelligence in interactive medical image analysis. Springer, Singapore, pp 241–263

    Chapter  Google Scholar 

  38. Singh LK, Garg H, Khanna M, Bhadoria RS (2021) An enhanced deep image model for glaucoma diagnosis using feature-based detection in retinal fundus. Med Biol Eng Comput 59(2):333–353

    Article  Google Scholar 

  39. Singh LK, Garg H, Khanna M (2021) An artificial intelligence-based smart system for early glaucoma recognition using OCT images. Int J E-Health Med Commun (IJEHMC) 12(4):32–59

    Article  Google Scholar 

  40. Sivaswamy J, Krishnadas SR, Joshi GD, Jain M, Tabish AU (2014) Drishti-gs: retinal image dataset for optic nerve head (ONH) segmentation. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). IEEE, Beijing, pp 53–56

    Chapter  Google Scholar 

  41. Sivaswamy J, Krishnadas S, Chakravarty A, Joshi GD, Tabish AS (2015) A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomed Imaging Data Papers 2(1):1004

    Google Scholar 

  42. Soorya M, Issac A, Dutta MK (2019) Automated framework for screening of glaucoma through cloud computing. J Med Syst 43(5):136

    Article  Google Scholar 

  43. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D et al (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, Piscataway, pp 1–9

    Google Scholar 

  44. Tan M, Le QV (2019) Efficientnet: rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946

  45. Tessier-Lavigne M (2000) Visual processing by the retina. Principles of neural science. McGraw-Hill, New York, pp 507–522

    Google Scholar 

  46. Thakur N, Juneja M (2017) Clustering based approach for segmentation of optic cup and optic disc for detection of glaucoma. Curr Med Imaging Rev 13(1):99–105

    Article  Google Scholar 

  47. Tobin KW Jr., Chaum E, Govindasamy VP, Karnowski TP, Sezer O (2006) Characterization of the optic disc in retinal imagery using a probabilistic approach. In: Medical imaging 2006: image processing, vol 6144. International Society for Optics and Photonics, Bellingham

    Google Scholar 

  48. Tuominen VJ, Ruotoistenmäki S, Viitanen A, Jumppanen M, Isola J (2010) ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res 12(4):R56

    Article  Google Scholar 

  49. Walter T, Klein JC, Massin P, Erginay A (2002) A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Trans Med 21:1236–1243

    Article  Google Scholar 

  50. Wong DWK, Liu J, Lim JH, Jia X, Yin F, Li H, Wong TY (2008) Level-set based automatic cup-to-disc ratio determination using retinal fundus images in ARGALI. In: 2008 30th Annual international conference of the IEEE engineering in medicine and biology society. IEEE, Vancouver, pp 2266–2269

    Chapter  Google Scholar 

  51. Yin F, Wong DWK, Quan Y, Yow AP, Tan NM, Gopalakrishnan K et al (2015) A cloud-based system for automatic glaucoma screening. In: 2015 37th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, Milan, pp 1596–1599

    Chapter  Google Scholar 

  52. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) UNet++: a nested U-Net architecture for medical image segmentation. In: Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Cham, pp 3–11

    Chapter  Google Scholar 

  53. Zhu X, Rangayyan RM, Ells AL (2010) Detection of the optic nerve head in fundus images of the retina using the Hough transform for circles. J Digit Imaging 23(3):332–341

    Article  Google Scholar 

  54. Zilly JG, Buhmann JM, Mahapatra D (2015) Boosting convolutional filters with entropy sampling for optic cup and disc image segmentation from fundus images. In: International workshop on machine learning in medical imaging. Springer, Cham, pp 136–143

    Chapter  Google Scholar 

  55. Zilly J, Buhmann JM, Mahapatra D (2017) Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput Med Imaging Graph 55:28–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhisham Sharma.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, H., Gupta, N., Agrawal, R. et al. A real time cloud-based framework for glaucoma screening using EfficientNet. Multimed Tools Appl 81, 34737–34758 (2022). https://doi.org/10.1007/s11042-021-11559-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11559-8

Keywords

Navigation