Skip to main content
Log in

Automated health detection of congestive heart failure subject using rank multiresolution wavelet packet attributes and 1-norm linear programming ELM

  • 1205: Emerging Technologies for Information Hiding and Forensics in Multimedia Systems
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

As far as the mortality of the global population is concerned, it is cardiovascular diseases which cause the highest death rate worldwide, mostly due to the Congestive Heart Failure (CHF). Therefore, an initial detection and diagnosis of CHF becomes essential. This manuscript presents a novel approach to detect health of \(\mathrm{CHF}\) subject which is based on Multiresolution Wavelet Packet (MRWP) decomposition method, attributes ranking approach, kernel principle component analysis \((\mathrm{KPCA})\) and \(1-\mathrm{Norm Linear}\) \(\mathrm{Programming}\) \(\mathrm{Extreme}\) \(\mathrm{Learning}\) Machine \((1-\mathrm{NLPELM}).\) For this investigation, the heart rate variability (HRV) signal has been decomposed up to 5-level using MRWP decomposition method. The sixty three log root mean square (LRMS) attributes were extracted from the decomposed HRV signal. The top ten attributes are selected by ranking approaches such as\(\mathrm{Fisher}\), Wilcoxon,\(\mathrm{Entropy}\),\(\mathrm{Bhattacharya}\), and receiver operating characteristic\((\mathrm{ROC})\). The ten ranked attributes were then mapped to one new feature by KPCA and fed to\(1-\mathrm{NLPELM}\). The \(\mathrm{HRV}\) database of normal subjects (normal sinus rhythm\((\mathrm{NSR})\), age 22–45 years old and elderly (ELY), age 60–82 years old) and CHF subjects (age 32–71 years old) were obtained from PhysioNet ATM. The simulation results demonstrated that \(\mathrm{Bhatacharya}+\mathrm{ KPCA with }1-\mathrm{NLPELM}\) approach achieved an accuracy of\(98.44\pm 1.4\mathrm{\%}\), \(99.13\pm 1.85\mathrm{ \%}\) for \(\mathrm{NSR}-\mathrm{CHF}\) and \(\mathrm{ELY}-\mathrm{CHF}\) respectively. Out of all ranking methods, \(\mathrm{Bhatacharya}\) combined with \(\mathrm{KPCA}+1-\mathrm{NLPELM}\) provided the highest degree of accuracy for all datasets. In addition, the proposed method has also achieved very good generalization performance and less execution time as compared to\(1-\mathrm{NLPELM}\),\(\mathrm{KPCA}+\mathrm{PNN}\)\(\mathrm{KPCA}+\mathrm{SVM}\), probabilistic neural network (\(\mathrm{PNN}\)) and support vector machine (\(\mathrm{SVM})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

ANS:

Autonomic nervous system

CRD:

Cardiac resynchronization-defibrillator

CVDS:

Cardio vascular diseases

CHF:

Congestive heart failure

GDA:

Generalized discriminant analysis

HRV:

Heart rate variability

1-NLPELM:

1-Norm linear programming extreme learning machine

ELY:

Elderly

ELM:

Extreme learning machine

ECG:

Electrocardiogram

KPCA:

Kernel principle component analysis

LRMSF:

Log root mean square features

ML:

Machine learning

μ1 and μ2:

Mean of 1st and 2nd group of Jth attributes (features)

MRWP:

Multiresolution wavelet packet

NSR:

Normal sinus rhythm

N1:

Number of first group attributes

N2:

Number of second group attributes

PNN:

Probabilistic neural network

RBF:

Radial basis function

ROC:

Receiver operating characteristic

SCA:

Sudden cardiac arrest

SVM:

Support vector machine

β:

The weight between hidden node and output

V1 and V2:

Variance of 1st and 2nd group of Jth attributes

W:

Wavelet functions

WP:

Wavelet packet

G(W,B,X):

Activation function(wight, biase, input attribute)

L:

Class label for given attributes

References

  1. Algra A, Tijssen JGP, Roelandt JRTC, Pool J, Lubsen J (1991) QTc prolongation measured by standard 12-lead electrocardiography is an independent risk factor for sudden death due to cardiac arrest. Circulation 83(6):1888–1894. https://doi.org/10.1161/01.CIR.83.6.1888

    Article  Google Scholar 

  2. Aran O, Akarun L (2010) A multi-class classification strategy for Fisher scores: application to signer independent sign language recognition. Pattern Recognit 43(5):1776–1788. https://doi.org/10.1016/j.patcog.2009.12.002

    Article  MATH  Google Scholar 

  3. Asl BM, Setarehdan SK, Mohebbi M (2008) Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artif Intell Med 44(1):51–64. https://doi.org/10.1016/j.artmed.2008.04.007

    Article  Google Scholar 

  4. Babaoglu I, Findik O, Ulker E (2010) A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine. Expert Syst Appl 37(4):3177–3183. https://doi.org/10.1016/j.eswa.2009.09.064

    Article  Google Scholar 

  5. Bartlett PL (1998) The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans Inf Theory 44(2):525–536. https://doi.org/10.1109/18.661502

    Article  MathSciNet  MATH  Google Scholar 

  6. Baudat G, Anouar F (2000) Generalized discriminant analysis using a Kernel approach. Neural Comput 12(10):2385–2404. https://doi.org/10.1162/089976600300014980

    Article  Google Scholar 

  7. Bin-Huang G, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892. https://doi.org/10.1109/TNN.2006.875977

    Article  Google Scholar 

  8. Bin-Huang G, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):107–122. https://doi.org/10.1007/s13042-011-0019-y

    Article  Google Scholar 

  9. Braunschweig F et al (2010) Management of patients receiving implantable cardiac defibrillator shocks. Europace 12(12):1673–1690. https://doi.org/10.1093/europace/euq316

    Article  Google Scholar 

  10. Cao J, Lin Z, Bin Huang G, Liu N (2012) Voting based extreme learning machine. Inf Sci (NY) 185(1):66–77. https://doi.org/10.1016/j.ins.2011.09.015

    Article  MathSciNet  Google Scholar 

  11. Castiglioni P, Lazzeroni D, Coruzzi P, Faini A (2018) Multifractal-multiscale analysis of cardiovascular signals: a DFA-based characterization of blood pressure and heart-rate complexity by gender. Complexity 2018(1):1–14. https://doi.org/10.1155/2018/4801924

    Article  MATH  Google Scholar 

  12. Ding S, Zhao H, Zhang Y, Xu X, Nie R (2015) Extreme learning machine: algorithm, theory and applications. Artif Intell Rev 44(1):103–115. https://doi.org/10.1007/s10462-013-9405-z

    Article  Google Scholar 

  13. Dua S, Du X, Vinitha-Sree S, Thajudin-Ahamed VI (2012) Novel classification of coronary artery disease using heart rate variability analysis. J Mech Med Biol 12(4):1240017. https://doi.org/10.1142/S0219519412400179

    Article  Google Scholar 

  14. Ebrahimzadeh E, Pooyan M (2011) Early detection of sudden cardiac death by using classical linear techniques and time-frequency methods on electrocardiogram signals. J Biomed Sci Eng 04(11):699–706. https://doi.org/10.4236/jbise.2011.411087

    Article  Google Scholar 

  15. Gao Y, Xie Z, Yu X (2020) A hybrid algorithm for integrated scheduling problem of complex products with tree structure. Multimed Tools Appl 79(43–44):32285–32304. https://doi.org/10.1007/s11042-020-09477-2

    Article  Google Scholar 

  16. Giri D et al (2013) Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform. Knowl-Based Syst 37:274–282. https://doi.org/10.1016/j.knosys.2012.08.011

    Article  Google Scholar 

  17. Hallstrom AP, Stein PK, Schneider R, Hodges M, Schmidt G, Ulm K (2005) Characteristics of heart beat intervals and prediction of death. Int J Cardiol 100(1):37–45. https://doi.org/10.1016/j.ijcard.2004.05.047

    Article  Google Scholar 

  18. Hemamalini B, Nagarajan V (2020) Wavelet transform and pixel strength-based robust watermarking using dragonflyoptimization. Multimed Tools Appl 79(13–14):8727–8746. https://doi.org/10.1007/s11042-018-6096-0

    Article  Google Scholar 

  19. Huang G-B et al (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501. https://doi.org/10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  20. Huang G-B, Ding X, Zhou H (2010) Optimization method based extreme learning machine for classification. Neurocomputing 74(1–3):155–163. https://doi.org/10.1016/j.neucom.2010.02.019

    Article  Google Scholar 

  21. Huang GB, Zhou H, Ding X, Zhang R (2011) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B 4(2):513–529. https://doi.org/10.1109/tsmcb.2011.2168604

    Article  Google Scholar 

  22. Huikuri HV et al (2003) Prediction of sudden cardiac death after myocardial infarction in the beta-blocking era. J Am Coll Cardiol 42(4):652–658. https://doi.org/10.1016/S0735-1097(03)00783-6

    Article  Google Scholar 

  23. Kampouraki A, Manis G, Nikou C (2009) Heartbeat time series classification with support vector machines. IEEE Trans Inf Technol Biomed 13(4):512–518. https://doi.org/10.1109/TITB.2008.2003323

    Article  Google Scholar 

  24. Karimi M (2006) Noninvasive detection and classification of coronary artery occlusions using wavelet analysis of heart sounds with neural networks. IET 20:117–120. https://doi.org/10.1049/ic:20050342

    Article  Google Scholar 

  25. Khushaba RN, Kodagoda S, Lal S, Dissanayake G (2011) Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm. IEEE Trans Biomed Eng 58(1):121–131. https://doi.org/10.1109/TBME.2010.2077291

    Article  Google Scholar 

  26. Lal H et al (2020) Machine learning based congestive heart failure detection using feature importance ranking of multimodal features. Math Biosci Eng 18(1):69–91. https://doi.org/10.3934/mbe.2021004

    Article  MathSciNet  MATH  Google Scholar 

  27. Li S, Wang H, Wang S, Zhang S (2020) Life detection and non-contact respiratory rate measurement in cluttered environments. Multimed Tools Appl 79(43–44):32065–32077. https://doi.org/10.1007/s11042-020-09510-4

    Article  Google Scholar 

  28. Li K, Daniels J, Liu C, Herrero P, Georgiou P (2020) Convolutional recurrent neural networks for glucose prediction. IEEE J Biomed Health Inform 24(2):603–613. https://doi.org/10.1109/JBHI.2019.2908488

    Article  Google Scholar 

  29. Liping X et al (2020) Computational diagnostic techniques for electrocardiogram signal analysis. Sensors 20:6318. https://doi.org/10.3390/s20216318

    Article  Google Scholar 

  30. Martinez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233. https://doi.org/10.1109/34.908974

    Article  Google Scholar 

  31. Patel DR (2011) Sudden cardiac death in young athletes. Asian J Sports Med 2(2):120–122. https://doi.org/10.5812/asjsm.34778

    Article  Google Scholar 

  32. Poddar MG, Kumar V, Sharma YP (2015) Automated diagnosis of coronary artery diseased patients by heart rate variability analysis using linear and non-linear methods. J Med Eng Technol 39(6):331–341. https://doi.org/10.3109/03091902.2015.1063721

    Article  Google Scholar 

  33. Rajendra AU, Kannathal N, Krishnan SM (2004) Comprehensive analysis of cardiac health using heart rate signals. Physiol Meas 25(5):1139–1151

    Article  Google Scholar 

  34. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039–H2049. https://doi.org/10.1103/physreva.29.975

    Article  Google Scholar 

  35. Singh RS, Saini BS, Sunkaria RK (2018) Classification of cardiac heart disease using reduced chaos features and 1-NORM linear programming extreme learning machine. Int J Multiscale Comput Eng 16(5):465–486. https://doi.org/10.1615/IntJMultCompEng.2018026587

    Article  Google Scholar 

  36. Singh RS, Saini BS, Sunkaria RK (2018) Assessment of cardiac heart failure and cardiac artery disease by the higher order spectra. Biomed Eng Appl Basis Commun 30(2):1–9

    Article  Google Scholar 

  37. Singh RS, Saini BS, Sunkaria RK (2018) Times varying spectral coherence investigation of cardiovascular signals based on energy concentration in healthy young and elderly subjects by the adaptive continuous morlet wavelet transform. IRBM 39(1):54–68. https://doi.org/10.1016/j.irbm.2017.12.004

    Article  Google Scholar 

  38. Tamil EBM, Kamarudin NH, Salleh R, Tamil AM (2008) A review on feature extraction & classification techniques for biosignal processing (Part I: Electrocardiogram). IFMBE Proc 21(1):107–112. https://doi.org/10.1007/978-3-540-69139-6-31

    Article  Google Scholar 

  39. Tang J, Alelyani S, Liu H (2014) Feature selection for classification: a review. Data Classif Algorithms Appl 2014:37

    MATH  Google Scholar 

  40. Vollmer M (2016) A robust, simple and reliable measure of heart rate variability using relative RR intervals. Comput Cardiol (2010) 42(6):609–612. https://doi.org/10.1109/CIC.2015.7410984

    Article  Google Scholar 

  41. Wallen H, Linder R (2013) Heart disease. Essential guide to blood coagulation, 2nd edn. Wiley, Hoboken, pp 97–104

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram S. Singh.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelmecha, D.J., Singh, R.S., Sinha, D.K. et al. Automated health detection of congestive heart failure subject using rank multiresolution wavelet packet attributes and 1-norm linear programming ELM. Multimed Tools Appl 81, 19587–19608 (2022). https://doi.org/10.1007/s11042-021-11562-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11562-z

Keywords

Navigation