Skip to main content
Log in

Image steganalysis with multi-scale residual network

  • 1187: Recent Advances in Multimedia Information Security: Cryptography and Steganography
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In recent years, many deep neural network models are used in steganalysis. However, the deep neural network models on steganalysis usually use the single scale channel for detection. When the number of convolution kernels reaches a certain limit, the improvement of detection accuracy is very weak by increasing the number of convolution kernels. In this paper, we try to establish a wider range of image region correlation extraction, and propose a multi-scale deep neural network model. The model is based on the deep residual network and adopts end-to-end design. Different local receptive fields in the same layer were selected to generate the characteristic channels. By the channel recognition, variety of image steganographic features were achieved from different scale channels. Experiments show that the multi-scale residual network can further improve the accuracy of steganography detection more than the networks of the single scale channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Avcibas I, Memon N, Sankur B (2001) Steganalysis of watermarking techniques using image quality metrics. Proc SPIE 4314:523–531

    Article  Google Scholar 

  2. Avcibas I, Memon N, Sankur B (2002) Image steganalysis with binary similarity measures. In: Proc. IEEE int. conf. Iiage process., vol 3. Rochester, NY, USA, pp 645–648

  3. Bas P, Filler T, Pevný T (2011) ‘Break our steganographic system’: the ins and outs of organizing BOSS. Proc. 13th int. conf. inf. hiding in lecture notes in computer science

  4. Bas P, Furon T (2007) BOWS-2. http://bows2.ec-lille.fr

  5. Boroumand M, Chen M, Fridrich J (2019) Deep residual network for steganalysis of digital images. IEEE Transactions on Information Forensics and Security 14(5):1181–1193

    Article  Google Scholar 

  6. Chen M, Sedighi V, Boroumand M, Fridrich J (2017) JPEG-phaseaware convolutional neural network for steganalysis of JPEG images. In: Proc. 5th ACM workshop

  7. Denemark TD, Boroumand M, Fridrich J (2016) Steganalysis features for content-adaptive JPEG steganography. IEEE Transactions on Information Forensics and Security 11(8):1736–1746

    Article  Google Scholar 

  8. Denemark T, Fridrich J, Comesaña-Alfaro P (2016) Improving selectionchannel-aware steganalysis features. Electronic Imaging Issue Date 2016:1–8

    Google Scholar 

  9. Denemark T, Sedighi V, Holub V, Cogranne R, Fridrich J (2014) Selection-channel-aware rich model for steganalysis of digital images. In: Proc. IEEE int. workshop inf. forensics secur, Atlanta, GA, USA, pp 48–53

  10. Fridrich J, Kodovský J (2011) Rich models for steganalysis of digital images. IEEE Transactions on Information Forensics and Security 7(3):868–882

    Article  Google Scholar 

  11. Guo L, Ni J, Shi YQ (2014) Uniform embedding for efficient JPEG steganography. IEEE Transactions on Information Forensics and Security 9(5):814–825

    Article  Google Scholar 

  12. Guo L, Ni J, Su W, Tang C, Shi Y (2015) Using statistical image model for JPEG steganography: Uniform embedding revisited. IEEE Trans Inf Forensics Security 10(12):2669–2680

    Article  Google Scholar 

  13. Guo L, Ni J, Shi Y (2012) An efficient JPEG steganographic scheme using uniform embedding. In: Proc. IEEE int. workshop inf. forensics secur., pp 169–174

  14. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proc. IEEE conf. comput. vis. pattern recognit. (CVPR), pp. 770–778

  15. He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In: ECCV 2016: computer vision, pp 630–645

  16. Holub V, Fridrich J, Denemark T (2014) Universal distortion function for steganography in an arbitrary domain. EURASIP J Inf Secur 2014:1

    Article  Google Scholar 

  17. Holub V, Fridrich J (2012) Designing steganographic distortion using directional filters. In: Proc. IEEE int. workshop inf. forensics secur., pp 234–239

  18. Kim J, Park H, Park J (2020) CNN-based image steganalysis using additional data embedding. Multimedia Tools and Applications 79(1):1355–1372

    Article  Google Scholar 

  19. Kodovsky J, Fridrich J, Holub V (2012) Ensemble classifiers for steganalysis of digital media. IEEE Transactions on Information Forensics and Security 7:432–444

    Article  Google Scholar 

  20. Li L, Zhang W, Chen K, Yu N (2020) Steganographic security analysis from side channel steganalysis and its complementary attacks. IEEE Transactions on Multimedia 22(10):2526–2536

    Article  Google Scholar 

  21. Li B, Wang M, Huang J, Li X (2014) A new cost function for spatial image steganography. In: Proc. IEEE int. conf. image process., pp 4206–4210

  22. Lyu S, Farid H (2002) Detecting hidden messages using higher-order statistics and support vector machines. In: Proc. 5th Int. workshop inf. hiding, vol 2578, pp 340–354

  23. Petitcolas F, Anderson R, Kuhn M (1999) Information hiding-A survey. Proc IEEE 87(7):1062–1078

    Article  Google Scholar 

  24. Pevný T, Filler T, Bas P (2010) Using high-dimensional image models to perform highly undetectable steganography. In: Proc. int. workshop inf. hiding. Springer, Calgary, AB, Canada, pp 161–177

  25. Provos N (2001) Defending against statistical steganalysis. Proc Usenix Secur Symp 10:323–336

    Google Scholar 

  26. Qian Y, Dong J, Wang W, Tan T (2015) Deep learning for steganalysis via convolutional neural networks. Proc SPIE 9409:94090

    Article  Google Scholar 

  27. Sallee P (2004) Model-based steganography. In: Digital watermarking. Springer, Berlin, Germany, pp 154–167

  28. Sedighi V, Cogranne R, Fridrich J (2016) Content-adaptive steganography by minimizing statistical detectability. IEEE Transactions on Information Forensics and Security 11(2):221–234

    Article  Google Scholar 

  29. Singh B, Chhajed M, Sur A, Mitra P (2021) Steganalysis using learned denoising kernels. Multimedia Tools and Applications 80(4):4903–4917

    Article  Google Scholar 

  30. Tang W, Li H, Luo W, Huang J (2016) Adaptive steganalysis based on embedding probabilities of pixels. IEEE Transactions on Information Forensics and Security 11(4):734–745

    Article  Google Scholar 

  31. Tang W, Li H, Luo W, Huang J (2014) Adaptive steganalysis against WOW embedding algorithm. In: Katzenbeisser S, Kwitt R, Piva A, (eds) Proc. 2nd ACM workshop inf. hiding multimedia secur., ACM, New York, NY, USA, pp 91–96

  32. Wang P, Liu F, Yang C, Luo X (2019) Steganalysis aided by fragile detection of image manipulations. Multimedia Tools and Applications 78(16):23309–23328

    Article  Google Scholar 

  33. Westfeld A (2001) F5-A steganographic algorithm. In: Information hiding. Springer, Berlin, Germany, pp 289–302

  34. Xu G (2017) Deep convolutional neural network to detect J-UNIWARD. In: Stamm M, Kirchner M (eds)Proc. 5th ACM workshop inf. hiding multimedia secur., Philadelphia, PA, USA, pp 67–73

  35. Xu G, Wu H, Shi Y (2016) Structural design of convolutional neural networks for steganalysis. IEEE Signal Process Lett 23(5):708–712

    Article  Google Scholar 

  36. Xu G, Wu H, Shi Y (2016) Ensemble of CNNs for steganalysis: an empirical study. In: Proc. 4th ACM workshop

  37. Ye J, Ni J, Yi Y (2017) Deep learning hierarchical representations for image steganalysis. IEEE Transactions on Information Forensics and Security 12(11):2545–2557

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant numbers 61471141, 61361166006, 61301099]; Key Technology Program of Shenzhen, China, [grant number JSGG20160427185010977]; Basic Research Project of Shenzhen, China [grant number JCYJ20150513151706561]. The authors would like to thank the Digital Data Embedding Laboratory sharing code on the website, and Institute of Information Countermeasures Technology providing deep learning servers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Han, Q., Li, Q. et al. Image steganalysis with multi-scale residual network. Multimed Tools Appl 82, 22009–22031 (2023). https://doi.org/10.1007/s11042-021-11611-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11611-7

Keywords

Navigation