Abstract
In recent years, with the rapid development of multimedia technologies, color face recognition has attracted more attention in various areas related to the computer vision. Extracting pertinent features from color image is a challenging problem due to the lack of efficient descriptors. Many methods in literature have been reported. However, some inconveniences arising from these methods are: insufficient color information and time consuming for features extraction. In this paper, a new model quaternion discrete orthogonal moments neural networks (QDOMNN) is proposed to improve the accuracy of color face recognition. The quaternion representation is used to represent color image in a holistic manner instead of monochromatic intensity information. Furthermore, the discrete orthogonal moments are used to extract compact and pertinent features from quaternion representation of image. The main purpose of the utilization of quaternion discrete orthogonal moments is to reduce the number of parameters in the input vector of the model, and consequently decreasing the computational time of training process, while improving the classification rate. The performance of our model is evaluated on some face databases, we obtain 100% as classification accuracy on faces94, grimace and GT, 91.93% on FEI, more than 94.72% on faces95 and more than 98.01% on faces96. Experiment results show the outperformance of our model (QDOMNN) against other existing methods in terms of classification rate, and robustness in noisy conditions.
Similar content being viewed by others
References
Akhmedova F, Liao S (2019) Face recognition with discrete orthogonal moments. In: Recent advances in computer vision. Springer, Cham, pp 189–209. https://doi.org/10.1007/978-3-030-03000-1_8
Almabdy S, Elrefaei L (2019) Deep convolutional neural network-based approaches for face recognition. Appl Sci 9(20):4397. https://doi.org/10.3390/app9204397
Brandoni D, Simoncini V (2020) Tensor-train decomposition for image recognition. Calcolo 57(1):9. https://doi.org/10.1007/s10092-020-0358-8
Cai W, Wei Z (2020) PiiGAN: Generative adversarial networks for pluralistic image inpainting. IEEE Access 8:48451–48463. https://doi.org/10.1109/ACCESS.2020.2979348
Chen BJ, Shu HZ, Zhang H, Chen G, Toumoulin C, Dillenseger JL, Luo LM (2012) Quaternion Zernike moments and their invariants for color image analysis and object recognition. Signal Processing 92(2):308–318. https://doi.org/10.1016/j.sigpro.2011.07.018
Chen B, Shu H, Coatrieux G, Chen G, Sun X, Coatrieux JL (2015) Color image analysis by quaternion-type moments. J Math Imaging Vis 51(1):124–144. https://doi.org/10.1007/s10851-014-0511-6
Dad N, En-Nahnahi N, Ouatik SEA (2018) Parameter-free quaternary orthogonal moments for color image retrieval and recognition. J Electronic Imaging 27(1):011007. https://doi.org/10.1117/1.JEI.27.1.011007
Deng Z, Peng X, Li Z, Qiao Y (2019) Mutual component convolutional neural networks for heterogeneous face recognition. IEEE Trans Image Process 28(6):3102–3114. https://doi.org/10.1109/TIP.2019.2894272
El Alami A, Lakhili Z, Mesbah A, Berrahou A, Qjidaa H (2019) Color face recognition by using quaternion and deep neural networks. In: 2019 International conference on wireless technologies, embedded and intelligent systems (WITS). IEEE, pp 1–5. https://doi.org/10.1109/WITS.2019.8723788
FEI Face database. https://fei.edu.br/~cet/facedatabase.html. Accessed 23 Dec 2020
Feng Q, Hao Q, Sbert M, Yi Y, Wei Y, Dai J (2019) Local parallel cross pattern: a color texture descriptor for image retrieval. Sensors 19(2):315. https://doi.org/10.3390/s19020315
GT Face database. http://www.anefian.com/research/face_reco.htm
Guo G, Zhang N (2019) A survey on deep learning based face recognition. Comput Vis Image Understanding 189:102805. https://doi.org/10.1016/j.cviu.2019.102805
Guo LQ, Zhu M (2011) Quaternion Fourier–Mellin moments for color images. Pattern Recognition 44(2):187–195. https://doi.org/10.1016/j.patcog.2010.08.017
Guo L, Dai M, Zhu M (2014) Quaternion moment and its invariants for color object classification. Information Sciences 273:132–143. https://doi.org/10.1016/j.ins.2014.03.037
Hamilton WR (1866) Elements of quaternions. Longmans, Green & Company
Hassaballah M, Aly S (2015) Face recognition: challenges, achievements and future directions. IET Computer Vision 9(4):614–626. https://doi.org/10.1049/iet-cvi.2014.0084
Hosny KM, Abd Elaziz M (2019) Face recognition using exact Gaussian-Hermit moments. In Recent advances in computer vision. Springer, Cham, pp 169–187. https://doi.org/10.1007/978-3-030-03000-1_7
Hosny KM, Abd Elaziz M, Darwish MM (2020) Color face recognition using novel fractional-order multi-channel exponent moments. Neural Computing Appl. https://doi.org/10.1007/s00521-020-05280-0
Kanan HR, Faez K (2008) GA-based optimal selection of PZMI features for face recognition. Appl Math Comput 205(2):706–715. https://doi.org/10.1016/j.amc.2008.05.114
Koschan A, Abidi M (2008) Digital color image processing. Wiley, Hoboken
Lakhili Z, El Alami A, Mesbah A, Berrahou A, Qjidaa H (2019) Deformable 3D Shape Classification Using 3D Racah Moments and Deep Neural Networks. Procedia Computer Science 148:12–20. https://doi.org/10.1016/j.procs.2019.01.002
Lakhili Z, El Alami A, Mesbah A, Berrahou A, Qjidaa H (2019) 3D Shape classification using 3D discrete moments and deep neural networks. In: Proceedings of the 2nd international conference on networking, information systems & security, pp 1–6. https://doi.org/10.1145/3320326.3320398
Lakhili Z, El Alami A, Mesbah A, Berrahou A, Qjidaa H (2020) Robust classification of 3D objects using discrete orthogonal moments and deep neural networks. Multimed Tools Appl, pp 1–25. https://doi.org/10.1007/s11042-020-08654-7
Lakhili Z, El Alami A, Qjidaa H (2020) Enhancing the performance of grayscale image classification by 2D Charlier moments neural networks. In: International conference on electronic engineering and renewable energy. Springer, Singapore, pp 151–159. https://doi.org/10.1007/978-981-15-6259-4_14
Lan R, Zhou Y, Tang YY (2016) Quaternionic local ranking binary pattern: a local descriptor of color images. IEEE Trans Image Process 25(2):566–579. https://doi.org/10.1109/TIP.2015.2507404
Leng L, Teoh ABJ (2015) Alignment-free row-co-occurrence cancelable palmprint fuzzy vault. Pattern Recognition 48(7):2290–2303. https://doi.org/10.1016/j.patcog.2015.01.021
Leng L, Zhang J (2013) Palmhash code vs. palmphasor code. Neurocomputing 108:1–12. https://doi.org/10.1016/j.neucom.2012.08.028
Leng L, Li M, Kim C, Bi X (2017) Dual-source discrimination power analysis for multi-instance contactless palmprint recognition. Multimed Tools Appl 76(1):333–354. https://doi.org/10.1007/s11042-015-3058-7
Masi I, Chang FJ, Choi J, Harel S, Kim J, Kim K, Nevatia R (2018) Learning pose-aware models for pose-invariant face recognition in the wild. IEEE Trans Pattern Anal Mach Intell 41(2):379–393. https://doi.org/10.1109/TPAMI.2018.2792452
Mukundan R, Ong SH, Lee PA (2001) Image analysis by Tchebichef moments. IEEE Trans Image Process 10(9):1357–1364. https://doi.org/10.1109/83.941859
Muqeet MA, Holambe RS (2019) Local binary patterns based on directional wavelet transform for expression and pose-invariant face recognition. Applied Computing and Informatics 15(2):163–171. https://doi.org/10.1016/j.aci.2017.11.002
Nwankpa C, Ijomah W, Gachagan A, Marshall S (2018) Activation functions: comparison of trends in practice and research for deep learning. arXiv preprint arXiv:1811.03378
Parcollet T, Zhang Y, Morchid M, Trabelsi C, Linarés G, De Mori R, Bengio Y (2018) Quaternion convolutional neural networks for end-to-end automatic speech recognition. arXiv preprint arXiv:1806.07789
Rani JS, Devaraj D (2012) Face recognition using Krawtchouk moment. Sadhana 37(4):441–460. https://doi.org/10.1007/s12046-012-0090-4
Rassem TH, Makbol NM, Yee SY (2017) Face recognition using completed local ternary pattern (CLTP) texture descriptor. Int J Electrical Comput Eng 7(3):1594. https://doi.org/10.11591/ijece.v7i3.pp1594-1601
Reverdy P, Leonard NE (2015) Parameter estimation in softmax decision-making models with linear objective functions. IEEE Trans Automation Sci Eng 13(1):54–67
Shao Z, Shu H, Wu J, Chen B, Coatrieux JL (2014) Quaternion Bessel–Fourier moments and their invariant descriptors for object reconstruction and recognition. Pattern Recognition 47(2):603–611. https://doi.org/10.1016/j.patcog.2013.08.016
Singh R, Om H (2017) Newborn face recognition using deep convolutional neural network. Multimed Tools Appl 76(18):19005–19015. https://doi.org/10.1007/s11042-016-4342-x
Singh C, Singh J (2018) Quaternion generalized Chebyshev-Fourier and pseudo-Jacobi-Fourier moments for color object recognition. Optics Laser Technol 106:234–250. https://doi.org/10.1016/j.optlastec.2018.03.033
Spacek L (2008) Description of the collection of facial images. http://cswww.essex.ac.uk/mv/allfaces/index.html. Accessed 11 Jan 2020
Subakan ÖN, Vemuri BC (2011) A quaternion framework for color image smoothing and segmentation. Int J Comput Vis 91(3):233–250. https://doi.org/10.1007/s11263-010-0388-9
Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2008) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227. https://doi.org/10.1109/TPAMI.2008.79
Xiang-yang W, Wei-yi L, Hong-ying Y, Pan-pan N, Yong-wei L (2015) Invariant quaternion radial harmonic Fourier moments for color image retrieval. Opt Laser Technol 66:78–88. https://doi.org/10.1016/j.optlastec.2014.07.020
Xi M, Chen L, Polajnar D, Tong W (2016) Local binary pattern network: A deep learning approach for face recognition. In: 2016 IEEE international conference on Image processing (ICIP), pp 3224–3228. https://doi.org/10.1109/ICIP.2016.7532955
Xu D, Zhang L, Zhang H (2017) Learning algorithms in quaternion neural networks using ghr calculus. Neural Network World 27(3):271
Yang HY, Liang LL, Li YW, Wang XY (2016) Quaternion exponent moments and their invariants for color image. Fundamenta Informaticae 145(2):189–205. https://doi.org/10.3233/FI-2016-1354
Yap PT, Paramesran R, Ong SH (2003) Image analysis by Krawtchouk moments. IEEE Trans Image Process 12(11):1367–1377. https://doi.org/10.1109/TIP.2003.818019
Zafar U, Ghafoor M, Zia T, Ahmed G, Latif A, Malik KR, Sharif AM (2019) Face recognition with Bayesian convolutional networks for robust surveillance systems. EURASIP Journal on Image and Video Processing 1:1–10. https://doi.org/10.1186/s13640-019-0406-y
Zeng S, Zhang B, Lan Y, Gou J (2019) Robust collaborative representation-based classification via regularization of truncated total least squares. Neural Comput Appl 31(10):5689–5697. https://doi.org/10.1007/s00521-018-3403-7
Zhou J, Shu H, Zhu H, Toumoulin C, Luo L (2005) Image analysis by discrete orthogonal Hahn moments. In International conference image analysis and recognition. Springer, Berlin, pp 524–531. https://doi.org/10.1007/11559573_65
Zhu HQ, Li Q, Liu Q (2014) Quaternion discrete Tchebichef moments and their applications. Int J Signal Process Image Process Pattern Recogn 7:149–162. https://doi.org/10.14257/ijsip.2014.7.6.13
Zhu X, Xu Y, Xu H, Chen C (2018) Quaternion convolutional neural networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 631–647. https://doi.org/10.1007/978-3-030-01237-3_39
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
El Alami, A., Berrahou, N., Lakhili, Z. et al. Efficient color face recognition based on quaternion discrete orthogonal moments neural networks. Multimed Tools Appl 81, 7685–7710 (2022). https://doi.org/10.1007/s11042-021-11669-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-021-11669-3