Skip to main content
Log in

Biometric recognition robust to partial and poor quality fingerprints using distinctive region adaptive SIFT keypoint fusion

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Quantity and the quality of detected discriminating features is very important in any recognition system. In minutia based fingerprint matching techniques, the performance depends upon the quality and quantity of the detected genuine minutia points. In this paper, we have demonstrated that using only minutia points for fingerprint matching does not give optimum results. We have proposed a feature level fusion technique using minutia and Scale Invariant Feature Transform (SIFT) keypoints. The extra step of reducing false matches is required when using the SIFT method. The proposed method adaptively selects the SIFT keypoints using the distinctive region criterion. This criterion ensures that only the SIFT keypoints which are at distinct regions from the minutia points are taken for the fusion process. The proposed fusion technique improves the recognition performance by 3.29% and 4.23% in terms of equal error rate (EER) on publicly available FVC2004 DB1A and CASIA dataset respectively. The experimental results also prove the efficacy of the proposed fusion technique in dealing with poor quality and partial fingerprints. A new partial fingerprint dataset is created by cropping the fingerprints in a FVC2004 DB1A dataset to evaluate the performance in the presence of partial fingerprints. The proposed technique reduces the equal error rate by 10.21% for the partial fingerprint dataset. The performance of the SIFT based fusion method is also compared with other multi-scale feature detectors such as BRISK, KAZE, AKAZE, and ORB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. https://www.opencv.org

References

  1. Jain AK, Ross AA, Nandakumar K (2011) Introduction to biometrics. Springer Science & Business Media

  2. Prabakhar S, Jain AK, Maio D, Maltoni D (2003) Handbook of fingerprint recognition

  3. Aadhar: Unique Identification Authority of India (2019) https://uidai.gov.in/. Online; Accessed: 4 October 2019

  4. Simon-Zorita D, Ortega-Garcia J, Fierrez-Aguilar J, Gonzalez-Rodriguez J (2003) Image quality and position variability assessment in minutiae-based fingerprint verification. IEE Proceedings-Vision, Image and Signal Processing 150(6):402–408

    Article  Google Scholar 

  5. Fierrez-Aguilar J, Chen Y, Ortega-Garcia J, Jain AK (2006) Incorporating image quality in multi-algorithm fingerprint verification. In: ICB. Springer, pp 213–220

  6. Liu X, Pedersen M, Charrier C, Bours P, Busch C (2016) The influence of fingerprint image degradations on the performance of biometric system and quality assessment. In: 2016 International Conference of the Biometrics Special Interest Group (BIOSIG). IEEE, pp 1–6

  7. Jea TY, Govindaraju V (2005) A minutia-based partial fingerprint recognition system. Pattern Recognition 38(10):1672–1684

    Article  Google Scholar 

  8. Malathi S, Meena C (2010) An efficient method for partial fingerprint recognition based on local binary pattern. In: 2010 International conference on communication control and computing technologies. IEEE, pp. 569–572

  9. Aravindan A, Anzar S (2017) Robust partial fingerprint recognition using wavelet sift descriptors. Pattern Anal Appl 20(4):963–979

    Article  MathSciNet  Google Scholar 

  10. Tuytelaars T, Mikolajczyk K (2008) Local invariant feature detectors: a survey. Now Publishers Inc

  11. Mukherjee D, Wu QJ, Wang G (2015) A comparative experimental study of image feature detectors and descriptors. Mach Vis Appl 26(4):443–466

    Article  Google Scholar 

  12. Mouats T, Aouf N, Nam D, Vidas S (2018) Performance evaluation of feature detectors and descriptors beyond the visible. J Intell Robot Sys 92(1):33–63

    Article  Google Scholar 

  13. Lowe DG, et al (1999) Object recognition from local scale-invariant features. In: iccv, vol 99, pp 1150–1157

  14. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  15. Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust features. In: European conference on computer vision. Springer, pp 404–417

  16. Leutenegger S, Chli M, Siegwart RY (2011) Brisk: Binary robust invariant scalable keypoints. In: 2011 International conference on computer vision. IEEE, pp 2548–2555

  17. Alcantarilla PF, Bartoli A, Davison AJ (2012) Kaze features. In: European conference on computer vision. Springer, pp 214–227

  18. Alcantarilla PF, Solutions T (2011) Fast explicit diffusion for accelerated features in nonlinear scale spaces. IEEE Trans Patt Anal Mach Intell 34(7):1281–1298

    Google Scholar 

  19. Rublee E, Rabaud V, Konolige K, Bradski G (2011) Orb: An efficient alternative to sift or surf. In: 2011 International conference on computer vision. IEEE, pp 2564–2571

  20. Tareen SAK, Saleem Z (2018) A comparative analysis of sift, surf, kaze, akaze, orb, and brisk. In: 2018 International conference on computing, mathematics and engineering technologies (iCoMET). IEEE, pp 1–10

  21. Bellavia F, Colombo C (2020) Is there anything new to say about sift matching? International journal of computer vision, pp 1–20

  22. Ross A, Jain A (2003) Information fusion in biometrics. Patt Recogn Lett 24(13):2115–2125

    Article  Google Scholar 

  23. Singh M, Singh R, Ross A (2019) A comprehensive overview of biometric fusion. Information Fusion 52:187–205

    Article  Google Scholar 

  24. Gawande U, Golhar Y (2018) Biometric security system: a rigorous review of unimodal and multimodal biometrics techniques. Int J Biometrics 10(2):142–175

    Article  Google Scholar 

  25. AlShehri H, Hussain M, AlSamh HA, Zuair M (2018) Fingerprint verification system for cross-sensor matching based on lbp and sift descriptors and score level fusion. Int J Comput Sci Softw Eng 7(3):47–51

    Google Scholar 

  26. Prabhakar S, Jain AK (2002) Decision-level fusion in fingerprint verification. Pattern Recognition 35(4):861–874

    Article  MATH  Google Scholar 

  27. Nandakumar K, Chen Y, Dass SC, Jain A (2007) Likelihood ratio-based biometric score fusion. IEEE Trans Pattern Anal Mach Intell 30(2):342–347

    Article  Google Scholar 

  28. Tico M, Kuosmanen P (2003) Fingerprint matching using an orientation-based minutia descriptor. IEEE Trans Pattern Anal Mach Intell 25(8):1009–1014

    Article  Google Scholar 

  29. Qi J, Yang S, Wang Y (2005) Fingerprint matching combining the global orientation field with minutia. Pattern Recogn Lett 26(15):2424–2430

    Article  Google Scholar 

  30. Baig WU, Munir U, Ejaz A, Sardar K (2019) Minutia texture cylinder codes for fingerprint matching. In: 2019 International Conference on Frontiers of Information Technology (FIT). IEEE, pp 77–775

  31. Zhang F, Xin S, Feng J (2019) Combining global and minutia deep features for partial high-resolution fingerprint matching. Pattern Recogn Lett 119:139–147

    Article  Google Scholar 

  32. Krish RP, Fierrez J, Ramos D, Alonso-Fernandez F, Bigun J (2019) Improving automated latent fingerprint identification using extended minutia types. Information Fusion 50:9–19

    Article  Google Scholar 

  33. Tang Y, Gao F, Feng J, Liu Y (2017) Fingernet: An unified deep network for fingerprint minutiae extraction. In: 2017 IEEE International Joint Conference on Biometrics (IJCB). IEEE, pp 108–116

  34. Minaee S, Azimi E, Abdolrashidi A (2019) Fingernet: Pushing the limits of fingerprint recognition using convolutional neural network. arXiv preprint arXiv:1907.12956

  35. Park U, Pankanti S, Jain AK (2008) Fingerprint verification using sift features. In: Biometric Technology for Human Identification V, vol 6944. International Society for Optics and Photonics, p 69440K

  36. Shreyas KK, Rajeev S, Panetta K, Agaian SS (2017) Fingerprint authentication using geometric features. In: 2017 IEEE International Symposium on Technologies for Homeland Security (HST). IEEE, pp 1–7

  37. Zhou R, Zhong D, Han J (2013) Fingerprint identification using sift-based minutia descriptors and improved all descriptor-pair matching. Sensors 13(3):3142–3156

    Article  Google Scholar 

  38. Zhou R, Sin S, Li D, Isshiki T, Kunieda H (2011) Adaptive sift-based algorithm for specific fingerprint verification. In: 2011 International conference on hand-based biometrics. IEEE, pp 1–6

  39. Mathur S, Vjay A, Shah J, Das S, Malla A (2016) Methodology for partial fingerprint enrollment and authentication on mobile devices. In: 2016 International Conference on Biometrics (ICB). IEEE, pp 1–8

  40. Malathi S, Meena C (2011) Improved partial fingerprint matching based on score level fusion using pore and sift features. In: 2011 International conference on process automation, control and computing. IEEE, pp 1–4

  41. Shuai X, Zhang C, Hao P (2008) Fingerprint indexing based on composite set of reduced sift features. In: 2008 19th International conference on pattern recognition. IEEE, pp 1–4

  42. Saeed F, Hussain M, Aboalsamh HA (2018) Classification of live scanned fingerprints using dense sift based ridge orientation features. In: 2018 1st International Conference on Computer Applications & Information Security (ICCAIS). IEEE, pp 1–4

  43. Kisku DR, Gupta P, Sing JK (2009) Feature level fusion of biometrics cues: Human identification with doddingtons caricature. In: International conference on security technology. Springer, pp 157–164

  44. Kasiselvanathan M, Sangeetha V, Kalaiselvi A (2020) Palm pattern recognition using scale invariant feature transform. Int J Intell Sustainable Comput 1(1):44–52

    Article  Google Scholar 

  45. Karim S, Zhang Y, Asif MR, Ali S (2017) Comparative analysis of feature extraction methods in satellite imagery. J Appl Remote Sensing 11(4):042618042618042618

    Article  Google Scholar 

  46. Rattani A, Kisku DR, Bicego M, Tistarelli M (2007) Feature level fusion of face and fingerprint biometrics. In: 2007 First IEEE international conference on biometrics: theory, applications, and systems. IEEE, pp 1–6

  47. Lindeberg T (1994) Scale-space theory: A basic tool for analyzing structures at different scales. J Appl Stat 21(1–2):225–270

    Article  Google Scholar 

  48. Ko K (2007) User’s guide to nist biometric image software (nbis). Tech. rep

  49. Ko K (2007) Users guide to export controlled distribution of nist biometric image software (nbis-ec). Tech. rep

  50. FVC2004: Dataset. http://bias.csr.unibo.it/fvc2004/databases.asp (2018). Online; Accessed: 24 August 2018

  51. NBIS: NIST Biometric Image Software. https://www.nist.gov/services-resources/software/nist-biometric-image-software-nbis (2018). Online; Accessed: 24 January 2018

  52. Leng C, Zhang H, Li B, Cai G, Pei Z, He L (2018) Local feature descriptor for image matching: A survey. IEEE Access 7:6424–6434

    Article  Google Scholar 

  53. Ma J, Jiang X, Fan A, Jiang J, Yan J (2021) Image matching from handcrafted to deep features: A survey. Int J Comput Vis 129(1):23–79

    Article  MathSciNet  MATH  Google Scholar 

  54. Chen L, Rottensteiner F, Heipke C (2021) Feature detection and description for image matching: from hand-crafted design to deep learning. Geo-spatial Information Science 24(1):58–74

    Article  Google Scholar 

  55. CASIA: CASIA-FingerprintV5. http://biometrics.idealtest.org/ (2019). Online; Accessed: 14 July 2019

  56. Chen F, Zhou J (2012) On the influence of fingerprint area in partial fingerprint recognition. In: Chinese conference on biometric recognition. Springer, pp 104–111

  57. Zanganeh O, Srinivasan B, Bhattacharjee N (2014) Partial fingerprint matching through region-based similarity. In: 2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA). IEEE, pp 1–8

  58. Tabassi E, Grother P (2009) Fingerprint image quality, pp 482–490. Boston: Springer US. https://doi.org/10.1007/978-0-387-73003-5_52

  59. Grother P, Tabassi E (2007) Performance of biometric quality measures. IEEE Trans Pattern Anal Mach Intell 29(4):531–543

    Article  Google Scholar 

  60. Tabassi E, Wilson C, Watson C (2004) Fingerprint image quality national institute of standards and technology

Download references

Acknowledgements

The authors would like to thank Dr. Babasaheb Ambedkar Research and Training Institute(BARTI), Pune, for its assistance in conducting this research. We also thank the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manik Hendre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendre, M., Patil, S. & Abhyankar, A. Biometric recognition robust to partial and poor quality fingerprints using distinctive region adaptive SIFT keypoint fusion. Multimed Tools Appl 81, 17483–17507 (2022). https://doi.org/10.1007/s11042-021-11686-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11686-2

Keywords

Navigation