Skip to main content
Log in

Robust image retrieval using CCV, GCH, and MS-LBP descriptors

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Content-Based Image Retrieval (CBIR) is a well-known research topic from the computer vision domain which helps retrieve similar images from a dataset as per the specified query image. The retrieval performance is inadequate for benchmark datasets viz., Corel-1k, Corel-5k, Corel-10k, and Ghim-10k. In this paper, we have encountered the problem of the low retrieval rates of the CBIR system and the high dimensionality of the feature vectors. We have proposed the hybrid framework consisting of three different feature descriptors for robust retrieval performance. We have propounded the use of modified Multi-Scale Local Binary Pattern (MS-LBP), Color Coherence Vector (CCV), and Global Color Histogram (GCH) for image retrieval. We have exerted the modified MS-LBP because of its ability to capture more texture detail than Local Binary Pattern (LBP) at multiple scales. This larger filter size of MS-LBP makes it less vulnerable to noise and illumination than the conventional LBP descriptor. The CCV captures color with location information well enough, but it’s vulnerable to the brightened images whereas, the GCH operator covers brightness (less sensitive to brightness than CCV), rotation, scale, translation, camera viewpoint invariant features, but lacks spatial information. The proposed framework improves the feature selection process by blending the strength of each of these descriptors. This paper also targets the high dimensionality of the feature vector of the MS-LBP and GCH descriptors by exerting Principal Component Analysis (PCA). Moreover, Linear Discriminant Analysis (LDA) selects robust and optimal features for retrieval. The proposed method is compared with state-of-the-art literature on four benchmark datasets in terms of Average Retrieval Precision (ARP), Average Retrieval Rate (ARR), and Retrieval Time (RT). Experimental results show that the proposed method excels the examined research practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Abate AF, Nappi M, Ricciardi S, Tortora G (2004) Faces: 3d facial reconstruction from ancient skulls using content based image retrieval. Journal of Visual Languages and Computing 15(5):373–389. https://doi.org/10.1016/j.jvlc.2003.11.004.

    Article  Google Scholar 

  2. Ahmeda KT, Ummesafia S, Iqbalb A (2019) Content based image retrieval using image features information fusion. Information Fusion 51:76–99. https://doi.org/10.1016/j.inffus.2018.11.004

    Article  Google Scholar 

  3. Antani S, Long LR, Thoma GR (2008) Bridging the gap: Enabling cbir in medical applications. In: computer-based medical systems. IEEE, pp 4–6 https://doi.org/10.1109/CBMS.2008.133

  4. Ashraf R, Ahmed M, Ahmad U, Habib MA, Jabbar S, Naseer K (2020) Mdcbir-mf: multimedia data for content-based image retrieval by using multiple features. Multimedia Tools and Applications 79:8553–8579. https://doi.org/10.1007/s11042-018-5961-1

    Article  Google Scholar 

  5. Boparai NK, Chhabra A (2015) A hybrid approach for improving content based image retrieval systems. In: 1st international conference on next generation computing technologies. IEEE, pp 944–949 https://doi.org/10.1109/NGCT.2015.7375260

  6. Cai D, He X, Han J (2008) Srda: An efficient algorithm for large-scale discriminant analysis. IEEE Transactions on Knowledge and Data Engineering 20:1–12. https://doi.org/10.1109/TKDE.2007.190669

    Article  Google Scholar 

  7. Chavda S, Goyani M (2019) Content-based image retrieval: The state of the art. Int J Next-Gener Comput 10(3):193–212 (http://www.innovationunlimited.net/ojs/index.php/ijngc/article/view/476)

    Google Scholar 

  8. Chavda S, Goyani M (2020) Hybrid approach to content-based image retrieval using modified multi-scale lbp and color features. SN Computer Science 1(305):1–15. https://doi.org/10.1007/s42979-020-00321-w

    Article  Google Scholar 

  9. Che C, Yu X, Sun X, Yu B (2017) Image retrieval by information fusion based on scalable vocabulary tree and robust Hausdorff distance. Eurasip Journal on Advances in Signal Processing 1:1–13. https://doi.org/10.1186/s13634-017-0456-1

    Article  Google Scholar 

  10. Chen Y-H, Chang C-C, Hsu C-Y (2020) Content-based image retrieval using block truncation coding based on edge quantization. Connection Science 32:431–448. https://doi.org/10.1080/09540091.2020.1753174

    Article  Google Scholar 

  11. Choras RS (2010) Cbir system for detecting and blocking adult images. In: The 9th World scientific and engineering academy and society international conference on signal processing, pages 52–57 https://doi.org/10.5555/1844625.1844636

  12. Chu K, Liu GH (2020) Image retrieval based on a multi-integration features model. Mathematical Problems in Engineering 1461459:1–10. https://doi.org/10.1155/2020/1461459

    Article  Google Scholar 

  13. Chuctaya H, Portugal C, Beltran C, Gutierrez J, Lopez C, Tupac Y (2011) M-cbir: A medical content-based image retrieval system using metric data-structures. In: 30th International conference of the Chilean computer science society. IEEE, pp 135–141 https://doi.org/10.1109/SCCC.2011.18

  14. Colombo C, Del Bimbo A (2002) Visible image retrieval. Image databases: Search and retrieval of digital imagery 2:11–33. https://doi.org/10.1002/0471224634.ch2

    Article  Google Scholar 

  15. Davatzikos C, Tao X, Dinggang S (2003) Hierarchical active shape models using the wavelet transform. IEEE Transactions on Medical Imaging 22(3):414–423. https://doi.org/10.1109/TMI.2003.809688

    Article  Google Scholar 

  16. Deng Y, Manjunath BS, Kenney C, Moore MS, Shin H (2001) An efficient color representation for image retrieval. IEEE Transactions on Image Processing 10(1):140–147. https://doi.org/10.1109/83.892450

    Article  MATH  Google Scholar 

  17. Duanmu X (2019) Image retrieval using color moment invariant. In: Seventh international conference on information technology. IEEE, pp 200–209 https://doi.org/10.1109/ITNG.2010.231

  18. Dubey SR, Singh SK, Singh RK (2015) Boosting local binary pattern with bag-of-filters for content based image retrieval. IEEE UP section conference on electrical computer and electronics, pp 1–6 https://doi.org/10.1109/UPCON.2015.7456703

  19. Dubey SR, Singh SK, Singh RK (2015) Rotation and scale invariant hybrid image descriptor and retrieval. Computers & Electrical Engineering 46:288–302. https://doi.org/10.1016/j.compeleceng.2015.04.011

    Article  Google Scholar 

  20. Eakins J, Boardman J, Graham M, (1998) Similarity Retrieval of Trademark Images. IEEE MultiMedia 2(5):53–63 https://doi.org/10.1109/93.682526

  21. ElAlami ME (2011) A novel image retrieval model based on the most relevant features. Knowl-Based Syst 24(1):23–32. https://doi.org/10.1016/j.knosys.2010.06.001

    Article  Google Scholar 

  22. Enser PGB, Sandom CJ, Lewis PH (2005) Surveying the reality of semantic image retrieval. In: International conference on advances in visual information systems. Springer, pp 177–188 https://doi.org/10.1007/1159006416

  23. Fadaei S, Amirfattahi R, Ahmadzadeh MR (2017) New content-based image retrieval system based on optimised integration of dcd, wavelet and curvelet features. IET Image Processing 11:89–98. https://doi.org/10.1049/iet-ipr.2016.0542

    Article  Google Scholar 

  24. Graham ME (2001) The cataloguing and indexing of images: time for a new paradigm? Art Libraries Journal 26(1):22–27. https://doi.org/10.1017/S0307472200012001

    Article  Google Scholar 

  25. Hafiane A, Chaudhuri S, Seetharaman G, Zavidovique B (2006) Region-based cbir in gis with local space filling curves to spatial representation. Pattern Recognition Letters 27(4):259–267. https://doi.org/10.1016/j.patrec.2005.08.007

    Article  Google Scholar 

  26. Haralick R, Shanmugam K (1973) Textural features for image classification. IEEE Transactions on Systems Man and Cybernetics SMC–3:610–621. https://doi.org/10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  27. Holt B, Hartwick L (1994) Retrieving art images by image content: the uc davis qbic project. Aslib Proceedings 46(10):243–248. https://doi.org/10.1108/eb051371

    Article  Google Scholar 

  28. Huang J, Kumar SR, Mitra M (1997) Combining supervised learning with color correlograms for content-based image retrieval. In: The fifth ACM international conference on multimedia, pp 325–334 https://doi.org/10.1145/266180.266383

  29. Ivanova K, Stanchev P (2009) Color harmonies and contrasts search in art image collections. In: Advances in multimedia. IEEE, pp 180–187 https://doi.org/10.1109/MMEDIA.2009.41

  30. Jabid T, Kabir MH, Chae O (2010) Local directional pattern (ldp)-a robust image descriptor for object recognition. In: International conference on advanced video and signal based surveillance . IEEE, pp 482–487 https://doi.org/10.1109/AVSS.2010.17

  31. Jacob IJ, Srinivasagan KG, Darney PE, Jayapriya K (2020) Deep learned inter-channel colored texture pattern: a new chromatic-texture descriptor. Pattern Analysis and Applications 23:239–251. https://doi.org/10.1007/s10044-019-00780-9

    Article  Google Scholar 

  32. Jhanwar N, Chaudhuri S, Seetharaman G, Zavidovique B (2004) Content based image retrieval using motif cooccurrence matrix. Image and Vision Computing 22(14):1211–1220. https://doi.org/10.1016/j.imavis.2004.03.026

    Article  Google Scholar 

  33. Jiang XY, Bunke H (1991) Simple and fast computation of moments. Pattern Recognition 24(8):801–806. https://doi.org/10.1016/0031-3203(91)90047-9

    Article  Google Scholar 

  34. Jing Yu, Zengchang Qin, Tao Wan, Xi Zhang (2013) Feature integration analysis of bag-of-features model for image retrieval. Neurocomputing 120:355–364. https://doi.org/10.1016/j.neucom.2012.08.06

    Article  Google Scholar 

  35. Jing H, Kumar SR, Mitra SR, Zhu W-J, Zabih R (1997) Image indexing using color correlograms. In: IEEE Computer society conference on computer vision and pattern recognition, pp 762–768 https://doi.org/10.1109/CVPR.1997.609412

  36. Jolliffe I (2011) Principal component analysis. In: International encyclopedia of statistical science. Springer, Berlin Heidelberg, pp 1094–1096. ISBN 978-3-642-04898-2 https://doi.org/10.1007/978-3-642-04898-2_455

  37. Jones BF, Schaefer G, Zhu SY (2004) Content-based image retrieval for medical infrared images. In: 26th International conference on engineering in medicine and biology society. IEEE, pp 1186–1187 https://doi.org/10.1109/IEMBS.2004.1403379

  38. Joshi C, Purohit GN, Mukherjee S (2017) Impact of cbir journey in satellite imaging. In: Communication and computing systems. CRC Press, pp 341–345

  39. Ju H, Ma KK (2002) Fuzzy color histogram and its use in color image retrieval. IEEE Transactions on Image Processing 11(8):944–952. https://doi.org/10.1109/TIP.2002.801585

    Article  Google Scholar 

  40. Kaushik C, Michael O-B, Kriengkrai P, Peng Z, Sharad M (2000) Similar shape retrieval in mars. Illinois Univ at Urbana-Champaign Dept. of Computer Science, Technical report

  41. Kumar TGS, Nagarajan V (2015) Local smoothness pattern for content based image retrieval. In: International conference on communications and signal processing. IEEE, pp 1190–1193 https://doi.org/10.1109/ICCSP.2015.7322694

  42. Kumar TGS, Nagarajan V (2019) Local curve pattern for content-based image retrieval. Pattern Analysis and Applications 22:1233–1242. https://doi.org/10.1007/s10044-018-0724-1

    Article  MathSciNet  Google Scholar 

  43. Kumar N, Berg A, Belhumeur PN, Nayar S (2011) Describable visual attributes for face verification and image search. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(10):1962–1977. https://doi.org/10.1109/TPAMI.2011.48

    Article  Google Scholar 

  44. Lee Y-H, Kim Y (2015) Efficient image retrieval using advanced surf and dcd on mobile platform. Multimedia Tools and Applications 74(7):2289–2299. https://doi.org/10.1007/s11042-014-2129-5

    Article  Google Scholar 

  45. List J (2007) How drawings could enhance retrieval in mechanical and device patent searching. World Patent Information 29(3):210–218. https://doi.org/10.1016/j.wpi.2007.01.001

    Article  Google Scholar 

  46. Liu GH, Yang JY (2013) Content-based image retrieval using color difference histogram. Pattern Recognition 46(1):188–198. https://doi.org/10.1016/j.patcog.2012.06.001

    Article  Google Scholar 

  47. Liu GH, Yang JY (2015) Content-based image retrieval using computational visual attention model. Pattern Recognition 48:2554–2566. https://doi.org/10.1016/j.patcog.2015.02.005

    Article  Google Scholar 

  48. Liu Y, Zhang D, Lu G, Ma WY (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recognition 40(1):262–282. https://doi.org/10.1016/j.patcog.2006.04.045

    Article  MATH  Google Scholar 

  49. Liu Y, Huang Y, Gao Z (2014) Feature extraction and similarity measure for crime scene investigation image retrieval. Journal of Xian University of Posts and Telecommunications 19:11–16

    Article  Google Scholar 

  50. Liu Y, Huang Y, Zhang S, Zhang D, Ling N (2017) Integrating object ontology and region semantic template for crime scene investigation image retrieval. In: Industrial electronics and applications. IEEE, pp 149–153 https://doi.org/10.1109/ICIEA.2017.8282831

  51. Lopes APB, de Avila SEF, Peixoto ANA , Oliveira RS, Araujo ADA, Coelho MDM (2009) Nude detection in video using bag-of-visual-features. In: Brazilian symposium on computer graphics and image processing. IEEE, pp 224–231 https://doi.org/10.1109/SIBGRAPI.2009.32

  52. Lopes APB, de Avila SEF, Peixoto ANA, Oliveira RS, Araujo ADA (2009) A bag-of-features approach based on hue-sift descriptor for nude detection. In: European signal processing conference. IEEE, pp 1552–1556

  53. Lu F, Huang J (2016) An improved local binary pattern operator for texture classification. In: International conference on acoustics, speech and signal processing. IEEE, pp 1308–1311 https://doi.org/10.1109/ICASSP.2016.7471888

  54. Manjunath S, Ohm JR, Vasudevan V, Yamada A (2001) Color and texture descriptors. IEEE Transactions on circuits and systems for video technology 11(6):703–715. https://doi.org/10.1109/76.927424

    Article  Google Scholar 

  55. Mathew SP, Balas VE, Zachariah KP (2015) A content-based image retrieval system based on convex hull geometry. Acta Polytechnica Hungarica 12(1):103–116

    Google Scholar 

  56. Mohiuddin F, Hossain I, Kabir MWUl (2017) A noble color-texture hybrid method for content-based image retrieval. In: 20th International conference of computer and information technology. IEEE, pp 1–6 https://doi.org/10.1109/ICCITECHN.2017.8281841

  57. Muller S, Rigoll G (1999) Improved stochastic modeling of shapes for content-based image retrieval. In: Content-based access of image and video libraries. IEEE, pp 23–27

  58. Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: A new feature descriptor for content-based image retrieval. IEEE Transactions on Image Processing 21:2874–2886. https://doi.org/10.1109/TIP.2012.2188809

    Article  MathSciNet  MATH  Google Scholar 

  59. Niu D, Zhao X, Lin X, Zhang C (2020) A novel image retrieval method based on multi-features fusion. Signal Processing: Image Communication 87:115911. https://doi.org/10.1016/j.image.2020.115911

    Article  Google Scholar 

  60. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24:971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  61. Ojala T, Pietikainen M, Harwood D (1994) Performance evaluation of texture measures with classification based on kullback discrimination of distributions. In: The 12th international conference on pattern recognition, computer vision and image processing, vol 1. IEEE, pp 582–585 https://doi.org/10.1109/ICPR.1994.576366

  62. Pardede J, Sitohang B, Akbar S, Khodra ML (2018) Re-weighting relevance feedback in hsv quantization for cbir. In The 19th international conference on software engineering, artificial intelligence, networking and parallel/distributed computing. IEEE/ACIS, pp 58–63 https://doi.org/10.1007/978-3-540-75690-3_13

  63. Pass G, Zabith R (1996) Histogram refinement for content-based image retrieval. In: Third IEEE workshop on applications of computer vision. IEEE, pp 96–102 https://doi.org/10.1109/ACV.1996.572008

  64. Pass G, Zabith R, Miller J (1997) Comparing images using color coherence vectors. In: The fourth ACM international conference on multimedia. ACM, pp 65–73 https://doi.org/10.1145/244130.244148

  65. Pavithra LK, Sharmila TS (2020) A new multi-level radial difference encoded pattern for image classification and retrieval. Multidimensional Systems and Signal Processing 31(4):1411–1433. https://doi.org/10.1007/s11045-020-00713-4

    Article  MATH  Google Scholar 

  66. Pradhan J, Kumar S, Pal A, Banka H (2018) A hierarchical cbir framework using adaptive tetrolet transform and novel histograms from color and shape features. Digital Signal Processing 82:258–281. https://doi.org/10.1016/j.dsp.2018.07.016

    Article  Google Scholar 

  67. Pradhan J, Kumar S, Pal AK, Banka H (2019) Multi-level colored directional motif histograms for content-based image retrieval. The Visual Computer. In Press https://doi.org/10.1007/s00371-019-01773-9

  68. Prashant S, Ashish K (2018) Content-based image retrieval using multiresolution speeded-up robust feature. International Journal of Computational Vision and Robotics 8(4):375–387. https://doi.org/10.1504/IJCVR.2018.093967

    Article  Google Scholar 

  69. Prashant S, Ashish K (2018) Utilizing multiscale local binary pattern for content-based image retrieval. Multimedia Tools and Applications 77:12377–12403. https://doi.org/10.1007/s11042-017-4894-4

    Article  Google Scholar 

  70. Rao KL, Rao V, Reddy LP (2016) Local mesh quantized extrema patterns for image retrieval. SpringerPlus 5 https://doi.org/10.1186/s40064-016-2664-9

  71. Rao LK, Rohini P, Reddy LP (2019) Multiple color channel local extrema patterns for image retrieval. In: Innovations in electronics and communication engineering - lecture notes in networks and systems, vol 65, pp 115–123 https://doi.org/10.1007/978-981-13-3765-9_13

  72. Rao AS, Krishna YKS, Krishna VV (2015) Image retrieval based on structural statistical methods of texture. International Journal of Research Studies in Computer Science and Engineering 2:80–87

    Google Scholar 

  73. Raza A, Nawaz T, Dawood H, Dawood H (2019) Square texton histogram features for image retrieval. Multimedia Tools and Applications 78:2719–2746. https://doi.org/10.1007/s11042-018-5795-x

    Article  Google Scholar 

  74. Rohini P, Bindu CS (2019) Quantized local trio patterns for multimedia image retrieval system. In: Lecture notes in networks and systems. Springer, pp 107–113 https://doi.org/10.1007/978-981-13-3765-9_12

  75. Roy K, Mukherjee J (2013) Image similarity measure using color histogram, color coherence vector, and sobel method. International Journal of Science and Research 2(1):538–543

    Google Scholar 

  76. Rui M, Cheng HDA (2009) Effective image retrieval using dominant color descriptor and fuzzy support vector machine. Pattern Recognition 42:147–157. https://doi.org/10.1016/j.patcog.2008.07.001

    Article  MATH  Google Scholar 

  77. Rui Y, Huang TS, Chang SF (1999) Image retrieval: Current techniques, promising directions, and open issues. Journal of Visual Communication and Image Representation 10:39–62. https://doi.org/10.1006/jvci.1999.0413

    Article  Google Scholar 

  78. Ruiz ME (2006) Combining image features, case descriptions and umls concepts to improve retrieval of medical images. In: American medical informatics association annual symposium proceedings, pp 674–678

  79. Shriram KV, Priyadarsini PLK, Baskar A (2015) An intelligent system of content-based image retrieval for crime investigation. International Journal of Advanced Intelligence Paradigms 7(3–4):264–279. https://doi.org/10.1504/IJAIP.2015.073707

    Article  Google Scholar 

  80. Shyu CR, Kak A, Brodley CE, Broderick LS (1999) Testing for human perceptual categories in a physician-in-the-loop cbir system for medical imagery. In: Workshop on content-based access of image and video libraries. IEEE, pp 102–108 https://doi.org/10.1109/IVL.1999.781132

  81. Singh S, Batra S (2020) An efficient bi-layer content based image retrieval system. Multimedia Tools and Applications 79(25–26):17731–17759. https://doi.org/10.1007/s11042-019-08401-7

    Article  Google Scholar 

  82. Soni D, Mathai KJ (2015) An efficient content based image retrieval system based on color space approach using color histogram and color correlogram. In: 5th International conference on communication systems and network technologies. IEEE, pp 488–492

  83. Srivastava P, Khare A (2017) Integration of wavelet transform, local binary patterns and moments for content-based image retrieval. Journal of Visual Communication and Image Representation 42:78–103. https://doi.org/10.1016/j.jvcir.2016.11.008

    Article  Google Scholar 

  84. Srivastava P, Binh NT, Khare A (2014) Content-based image retrieval using moments. In: International conference on context-aware systems and applications. Springer, pp 228–237 https://doi.org/10.1007/978-3-319-05939-6_23

  85. Sun J, Wu X (2006) Chain code distribution-based image retrieval. In: Intelligent information hiding and multimedia signal processing. IEEE, pp 139–142 https://doi.org/10.1109/IIH-MSP.2006.264973

  86. Suresh MB, Naik BM (2017) A novel scheme for extracting shape and texture features using cbir approach. Int Conf Energy Commun Data Analytics Soft Comput, 3399–3404, https://doi.org/10.1109/ICECDS.2017.8390091

  87. Takala V, Ahonen T, Pietikainen M (2005) Block-based methods for image retrieval using local binary patterns. In: Scandinavian conference on image analysis. Springer, pp 882–891 https://doi.org/10.1007/11499145_89

  88. Talib A, Mahmuddin M, Husni H, George E (2013) A weighted dominant color descriptor for content-based image retrieval. Journal of Visual Communication and Image Representation 24:345–360. https://doi.org/10.1016/j.jvcir.2013.01.007

    Article  Google Scholar 

  89. Tan X, Triggs B (2007) Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: International workshop on analysis and modeling of faces and gestures. Springer, pp 168–182 https://doi.org/10.1007/978-3-540-75690-3_13

  90. Tiwari A, Bansal V (2004) Patseek: Content based image retrieval system for patent database. In: International Conference on Electronic Business, AIS, pp 1167–1171. https://aisel.aisnet.org/iceb2004/199

  91. Tuanase-Avuatavului M (2005) Shape decomposition and retrieval. ASCI dissertation series, 112, Utrecht University, pp 1-170. http://dspace.library.uu.nl/handle/1874/1700

  92. Umamaheswaran S, Lakshmanan R, Vinothkumar V, Arvind KS, Nagarajan S (2019) New and robust composite micro structure descriptor (cmsd) for cbir. International Journal of Speech Technology 23(2):243–249. https://doi.org/10.1007/s10772-019-09663-0

    Article  Google Scholar 

  93. Van Der Merwe JS, Ferreira HC, Clarke WA (2005) Towards detecting man-made objects in natural environments for a man-made object mpeg-7 cbir descriptor-sandf application. In: 16th Annual symposium of the pattern recognition association of South Africa, vol 1, pp19–24,

  94. Verma M, Raman B, Murala S (2015) Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing 165:255–269. https://doi.org/10.1016/j.neucom.2015.03.015

    Article  Google Scholar 

  95. Vipparthi SK, Nagar SK (2014) Color directional local quinary patterns for content based indexing and retrieval. Human-centric Computing and Information Sciences 4(1):1–13. https://doi.org/10.1186/s13673-014-0006-x

    Article  Google Scholar 

  96. Vrochidis S, Papadopoulos S, Moumtzidou A, Sidiropoulos P, Pianta E, Kompatsiaris I (2010) Towards content-based patent image retrieval: A framework perspective. World Patent Information 32(2):94–106. https://doi.org/10.1016/j.wpi.2009.05.010

    Article  Google Scholar 

  97. Wang J, Li J (2003) Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9):1075–1088

    Article  Google Scholar 

  98. Wang J, Li J, Wiederhold G (2001) Simplicity: Semantics-sensitive integrated matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(9):947–963. https://doi.org/10.1109/34.955109

    Article  Google Scholar 

  99. Wang Y, Huang K, Tan T (2007) Human activity recognition based on r transform. In: Computer vision and pattern recognition. IEEE, pp 1–8 https://doi.org/10.1109/CVPR.2007.383505

  100. Wong KM, PO LM, Cheung KW (2006) Dominant color structure descriptor for image retrieval. In: International conference on image processing, pp 365–368 https://doi.org/10.1109/ICIP.2007.4379597

  101. Xia Y, Wan S, Peiquan J, Yue L (2013) Multi-scale local spatial binary patterns for content-based image retrieval. In: International conference on active media technology. Springer, pp 423–432 https://doi.org/10.1007/978-3-319-02750-0_45

  102. Xu D, Yan S, Tao D, Lin S, Zhang HJ (2007) Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval. IEEE Transactions on Image processing 16(11):2811–2821. https://doi.org/10.1109/TIP.2007.906769

    Article  MathSciNet  Google Scholar 

  103. Yuan BH, Liu GH (2020) Image retrieval based on gradient-structures histogram. Neural Computing and Applications 32(15):11717–11727. https://doi.org/10.1007/s00521-019-04657-0.

    Article  Google Scholar 

  104. Zhang L, Hu Y, Li M, Ma W, Zhang H (2004) Efficient propagation for face annotation in family albums. In: The 12th annual international conference on multimedia. ACM, pp 716–723 https://doi.org/10.1145/1027527.1027689

  105. Zhang D, Lu G, et al. (2001) A comparative study on shape retrieval using fourier descriptors with different shape signatures. In: International conference on intelligent multimedia and distance education, pp 1–9

  106. Zhou XS, Zillner S, Moeller M, Sintek M, Zhan Y, Krishnan A, Gupta A (2008) Semantics and cbir: a medical imaging perspective. In: The International conference on content-based image and video retrieval. ACM, pp 571–580. https://doi.org/10.1145/1386352.1386436

  107. Zhou J-X, Liu XD, Xu T-W, Gan JH, Liu WQ (2016) A new fusion approach for content based image retrieval with color histogram and local directional pattern. International Journal of Machine Learning and Cybernetics 9(4):677–689. https://doi.org/10.1007/s13042-016-0597-9

    Article  Google Scholar 

  108. Zhou J, Liu X, Liu W, Gan J (2019) Image retrieval based on effective feature extraction and diffusion process. Multimedia Tools and Applications 78:6163–6190. https://doi.org/10.1007/s11042-018-6192-1

    Article  Google Scholar 

  109. Zhu L, Jin H, Zheng R, Zhang Q, Xie X, Guo M (2011) Content-based design patent image retrieval using structured features and multiple feature fusion. In: 6th International conference on image and graphics. IEEE, pages 969–974 https://doi.org/10.1109/ICIG.2011.121

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavda, S., Goyani, M. Robust image retrieval using CCV, GCH, and MS-LBP descriptors. Multimed Tools Appl 81, 4039–4072 (2022). https://doi.org/10.1007/s11042-021-11698-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11698-y

Keywords

Navigation