Skip to main content
Log in

A comprehensive study of age-related macular degeneration detection

  • 1195: Deep Learning for Multimedia Signal Processing and Applications
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Age-related macular degeneration (AMD) is an illness involving the degeneration of the macula of the retina. Fundus photography is the most affordable and convenient way to monitor individuals, in which AMD symptoms segmentation is necessary to assist clinical diagnosis. This study conducted a large number of experimental discussions on the annotation quality and symptoms categories to find a reliable learning strategy, and then applied it to early detection of AMD. Specifically, we discuss the inference of the representational power of the deep neural network, loss function selection, the preprocessing scheme of annotation augmentation, and the annotation quality of the dataset on prediction performance. This paper verified that different learning strategies need to be selected for the AMD symptoms segmentation tasks with varying characteristics of database, which can be used as a reference for developing the related research in the future. On the other hand, we demonstrated that current medical datasets suffer from annotation quality uncertainty, leading to limited learning capabilities. In the future, it is necessary to develop methods to overcome the impact of datasets with poor annotation quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. N Engl J Med 358:2606–2617

    Article  Google Scholar 

  2. Fine SL, Berger JW, Maguire MG, Ho AC (2000) Age-related macular degeneration. N Engl J Med 342:483–492

    Article  Google Scholar 

  3. Bressler NM, Bressler SB, Fine SL (1988) Age-related macular degeneration. Surv Ophthalmol 32:375–413

    Article  Google Scholar 

  4. Walter T, Massin P, Erginay A et al (2007) Automatic detection of microaneurysms in color fundus images. Med Image Anal 11:555–566

    Article  Google Scholar 

  5. Quellec G, Charrière K, Boudi Y et al (2017) Deep image mining for diabetic retinopathy screening. Med Image Anal 39:178–193

    Article  Google Scholar 

  6. Fleming AD, Philip S, Goatman KA et al (2007) Automated detection of exudates for diabetic retinopathy screening. Phys Med Biol 52:7385

    Article  Google Scholar 

  7. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. pp. 234–241

  8. Tajbakhsh N, Jeyaseelan L, Li Q et al (2020) Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Med Image Anal 63:101693

    Article  Google Scholar 

  9. Karimi D, Dou H, Warfield SK, Gholipour A (2020) Deep learning with noisy labels: exploring techniques and remedies in medical image analysis. Med Image Anal 65:101759

    Article  Google Scholar 

  10. Heller N, Dean J, Papanikolopoulos N (2018) Imperfect segmentation labels: how much do they matter? In: Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. Springer, pp. 112–120

  11. Zhang X, Thibault G, Decencière E et al (2014) Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med Image Anal 18:1026–1043

    Article  Google Scholar 

  12. Joshi S, Karule PT (2020) Mathematical morphology for microaneurysm detection in fundus images. Eur J Ophthalmol 30:1135–1142

    Article  Google Scholar 

  13. Cárdenas JM, Martinez-Perez ME, March F, Hevia-Montiel N (2013) Mean shift based automatic detection of exudates in retinal images. In: Image Processing and Communications Challenges 4. Springer, pp 73–82

    Chapter  Google Scholar 

  14. Marino C, Ares E, Penedo MG et al (2008) Automated three stage red lesions detection in digital color fundus images. WSEAS Trans Comput 7:207–215

    Google Scholar 

  15. Sopharak A, Uyyanonvara B, Barman S (2009) Automatic exudate detection from non-dilated diabetic retinopathy retinal images using fuzzy c-means clustering. Sensors 9:2148–2161

    Article  Google Scholar 

  16. Yazid H, Arof H, Isa HM (2012) Automated identification of exudates and optic disc based on inverse surface thresholding. J Med Syst 36:1997–2004

    Article  Google Scholar 

  17. Yan Z, Han X, Wang C, et al (2019) Learning mutually local-global U-Nets for high-resolution retinal lesion segmentation in fundus images. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). pp 597–600

  18. Badar M, Shahzad M, Fraz MM (2018) Simultaneous segmentation of multiple retinal pathologies using fully convolutional deep neural network. In: Annual Conference on Medical Image Understanding and Analysis. pp. 313–324

  19. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3431–3440

  20. Chen L-C, Papandreou G, Kokkinos I, et al (2014) Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv Prepr arXiv14127062

  21. Chen L-C, Papandreou G, Kokkinos I et al (2017) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40:834–848

    Article  Google Scholar 

  22. Chen L-C, Papandreou G, Schroff F, Adam H (2017) Rethinking atrous convolution for semantic image segmentation. arXiv Prepr arXiv170605587

  23. Chen L-C, Zhu Y, Papandreou G, et al (2018) Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV). pp 801–818

  24. Zabihollahy F, Lochbihler A, Ukwatta E (2019) Deep learning based approach for fully automated detection and segmentation of hard exudate from retinal images. In: Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging. p 1095308

  25. Kou C, Li W, Liang W et al (2019) Microaneurysms segmentation with a U-net based on recurrent residual convolutional neural network. J Med Imaging 6:25008

    Article  Google Scholar 

  26. Li D, Dharmawan DA, Ng BP, Rahardja S (2019) Residual u-net for retinal vessel segmentation. In: 2019 IEEE International Conference on Image Processing (ICIP). pp 1425–1429

  27. Yu W, Fang B, Liu Y, et al (2019) Liver vessels segmentation based on 3d residual U-NET. In: 2019 IEEE International Conference on Image Processing (ICIP). pp 250–254

  28. Khanna A, Londhe ND, Gupta S, Semwal A (2020) A deep residual U-net convolutional neural network for automated lung segmentation in computed tomography images. Biocybern Biomed Eng 40:1314–1327

    Article  Google Scholar 

  29. Kerfoot E, Clough J, Oksuz I, et al (2018) Left-ventricle quantification using residual U-Net. In: International Workshop on Statistical Atlases and Computational Models of the Heart. pp. 371–380

  30. Francia GA, Pedraza C, Aceves M, Tovar-Arriaga S (2020) Chaining a U-net with a residual U-net for retinal blood vessels segmentation. IEEE Access 8:38493–38500

    Article  Google Scholar 

  31. Zhang J, Lv X, Zhang H, Liu B (2020) AResU-net: attention residual U-net for brain tumor segmentation. Symmetry (Basel) 12:721

    Article  Google Scholar 

  32. Shen W, Xu W, Zhang H et al (2020) Automatic segmentation of the femur and tibia bones from X-ray images based on pure dilated residual U-Net. Inverse Probl Imaging 15:1333

    Article  MathSciNet  Google Scholar 

  33. Guo S, Li T, Kang H et al (2019) L-Seg: an end-to-end unified framework for multi-lesion segmentation of fundus images. Neurocomputing 349:52–63

    Article  Google Scholar 

  34. Peng Y, Dharssi S, Chen Q et al (2019) DeepSeeNet: a deep learning model for automated classification of patient-based age-related macular degeneration severity from color fundus photographs. Ophthalmology 126:565–575

    Article  Google Scholar 

  35. Yan F, Cui J, Wang Y, et al (2018) Deep random walk for drusen segmentation from fundus images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 48–55

  36. Bertasius G, Torresani L, Yu SX, Shi J (2017) Convolutional random walk networks for semantic image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 858–866

  37. Pham Q, Ahn S, Song SJ, Shin J (2020) Automatic Drusen segmentation for age-related macular degeneration in fundus images using deep learning. Electronics 9:1617

    Article  Google Scholar 

  38. Spanhol FA, Oliveira LS, Petitjean C, Heutte L (2016) Breast cancer histopathological image classification using convolutional neural networks. In: 2016 international joint conference on neural networks (IJCNN). pp 2560–2567

  39. Grassmann F, Mengelkamp J, Brandl C et al (2018) A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology 125:1410–1420

    Article  Google Scholar 

  40. Hu K, Zhang Z, Niu X et al (2018) Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 309:179–191

    Article  Google Scholar 

  41. Lin T-Y, Goyal P, Girshick R, et al (2017) Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision. pp. 2980–2988

  42. Zong Y, Chen J, Yang L et al (2020) U-net based method for automatic hard exudates segmentation in fundus images using inception module and residual connection. IEEE Access 8:167225–167235

    Article  Google Scholar 

  43. Kats E, Goldberger J, Greenspan H (2019) Soft labeling by distilling anatomical knowledge for improved ms lesion segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). pp 1563–1566

  44. Fu H, Li F, Orlando JI, Bogunović H, Sun X, Liao J, Xu Y, Zhang S, Zhang X January(2020) Adam: automatic detection challenge on age-related macular degeneration. IEEE Data Port. https://doi.org/10.21227/dt4f-rt59 Accessed 28 March 2021

  45. Porwal P, Pachade S, Kamble R, Kokare M, Deshmukh G, Sahasrabuddhe V, Meriaudeau F (2019) Indian diabetic retinopathy image dataset (IDRID). IEEE Data Port https://doi.org/10.21227/H25W98. Accessed 28 March 2021

  46. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Yen Lee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, CC., Lee, CY., Lin, CJ. et al. A comprehensive study of age-related macular degeneration detection. Multimed Tools Appl 81, 11897–11916 (2022). https://doi.org/10.1007/s11042-021-11896-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11896-8

Keywords

Navigation