Skip to main content
Log in

Handling of resource allocation in flying ad hoc network through dynamic graph modeling

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Now a days, Flying ad hoc network (FANET) as a trending wireless classification has a vibrant area of research. FANET architecture can also be viewed as a special form of a distributed system in which unmanned aerial vehicles are the nodes with highly dynamic behavior in terms of their mobility. Now, resource allocation problem is always a concern in distributed architecture, so as in FANET. The concept of mutual exclusion plays a vital role and ensures the access of shared resources in a mutual access manner by the nodes running on different processors. Through this research work, we modeled FANET as an application of a dynamic graph by applying its properties and propose a token-based resource allocation algorithm in FANET to achieve distributed mutual exclusion. We have used Neo4j as a graph database to model our work and present better results in terms of various performance metrics as compared to existing work in FANET till date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Akyildiz IF, Kak A, Nie S (2020) 6G and beyond: the future of wireless communications systems. IEEE Access 8:133995–134030. https://doi.org/10.1109/ACCESS.2020.3010896

    Article  Google Scholar 

  2. Alshammari M., and Rezgui A. (2020) A single-source shortest path algorithm for dynamic graphs. AKCE Int J Graphs Combinatorics, pp. 1–6, https://doi.org/10.1016/j.akcej.2020.01.002

  3. Anacleto O, Queen C (2017) Dynamic chain graph models for time series network data. Bayesian Anal 12(2):491–509. https://doi.org/10.1214/16-ba1010

    Article  MathSciNet  MATH  Google Scholar 

  4. Attiya H., Kogan A. and Welch J. L. (2008) Efficient and robust local mutual exclusion in Mobile ad hoc networks. The 28th international conference on distributed computing systems, Beijing, pp. 321-328, https://doi.org/10.1109/ICDCS.2008.82.

  5. Attiya H, Kogan A, Welch JL (2010) Efficient and robust local mutual exclusion in Mobile ad hoc networks. IEEE Trans Mobile Comp 9(3):361–375. https://doi.org/10.1109/TMC.2009.137

    Article  Google Scholar 

  6. Azevedo MIB, Coutinho C, Toda EM, Carvalho TC, Jailton J (2019) Wireless communications challenges to flying ad hoc networks (FANET). Mobile Comp, Jesus Hamilton Ortiz, IntechOpen. https://doi.org/10.5772/intechopen.86544

  7. Baala H, Flauzac O, Gaber J, Bui M, El-Ghazawi T (2003) A self-stabilizing distributed algorithm for spanning tree construction in wireless ad hoc networks. J Parall Distrib Comput 63(1):97–104. https://doi.org/10.1016/S0743-7315(02)00028-X

    Article  MATH  Google Scholar 

  8. Béres F., Kelen D. M., Pálovics R. et al. (2019) Node embeddings in dynamic graphs. Appl Network Sci. 4: https://doi.org/10.1007/s41109-019-0169-5

  9. Chen Y., and Welch J. L. (2002) Self-stabilizing mutual exclusion using tokens in Mobile ad hoc networks. Proceedings of the 6th international workshop on discrete algorithms and methods for Mobile computing and communications, pp. 34-42, https://doi.org/10.1145/570810.570815

  10. Chen Y, Welch JL (2005) Self-stabilizing dynamic mutual exclusion for mobile ad hoc networks. J Parall Distri Comput 65(9):1072–1089. https://doi.org/10.1016/j.jpdc.2005.03.009

    Article  MATH  Google Scholar 

  11. Dijkstra EW (1965) Solution of a problem in concurrent programming control. Commun ACM 8(9):569. https://doi.org/10.1145/365559.365617

    Article  Google Scholar 

  12. Dijkstra EW (1974) Self stabilization in spite of distributed control. Commun ACM 17(11):643–644. https://doi.org/10.1145/361179.361202

    Article  MATH  Google Scholar 

  13. Ferone D, Festa P, Napoletano A, Pastore T (2017) Shortest paths on dynamic graphS: a survey. Pesquisa Operacional 37(3):487–508. https://doi.org/10.1590/0101-7438.2017.037.03.0487

    Article  Google Scholar 

  14. Giordan D, Adams MS, Aicardi I, Alicandro M, Allasia P, Baldo M, de Berardinis P, Dominici D, Godone D, Hobbs P, Lechner V, Niedzielski T, Piras M, Rotilio M, Salvini R, Segor V, Sotier B, Troilo F (2020) The use of unmanned aerial vehicles (UAVs) for engineering geology applications. Bull Eng Geol Environ 79:3437–3481. https://doi.org/10.1007/s10064-020-01766-2

    Article  Google Scholar 

  15. Harary F, Gupta G (1997) Dynamic graph models. Math Comp Model 25(7):79–87. https://doi.org/10.1016/S0895-7177(97)00050-2

    Article  MathSciNet  MATH  Google Scholar 

  16. https://lucene.apache.org (Accessed on 10 May 2021)

  17. https://www.neo4j.com (Accessed on 27 April 2021)

  18. Ismail DPII, Ja’afar MHF (2007) Mobile ad hoc network overview. Asia-Pacific Conf Appl Electromagnetics. https://doi.org/10.1109/apace.2007.4603864

  19. Jain M, Saxena R (2017) Overview of VANET: requirements and its routing protocols. Int Conf Comm Signal Process (ICCSP). https://doi.org/10.1109/iccsp.2017.8286742

  20. Kazemi SM, Goel R, Jain K, Kobyzev I, Sethi A, Forsyth P, Poupart P (2020) Representation learning for dynamic graphs: a survey. J Mach Learn Res 21(70):1–73

    MathSciNet  MATH  Google Scholar 

  21. Khanna A, Singh AK, Swaroop A (2016) A token-based solution to group local mutual exclusion problem in Mobile ad hoc networks. Arab J Sci Eng 41:5181–5194. https://doi.org/10.1007/s13369-016-2199-y

    Article  MathSciNet  MATH  Google Scholar 

  22. Khanna A, Rodrigues JJPC, Gupta N, Swaroop A, Gupta D, Saleem K, De Albuquerque VHC (2019) A mutual exclusion algorithm for flying ad hoc networks. Comput Electrical Eng 76:82–93. https://doi.org/10.1016/j.compeleceng.2019.03.005

    Article  Google Scholar 

  23. Khanna A, Rodrigues JJPC, Gupta N, Swaroop A, Gupta D (2020) Local mutual exclusion algorithm using fuzzy logic for flying ad hoc networks. Comput Commun 156:101–111. https://doi.org/10.1016/j.comcom.2020.03.036

    Article  Google Scholar 

  24. Lim J, Jeong YS, Park DS, Lee HM (2018) An efficient distributed mutual exclusion algorithm for intersection traffic control. J Supercomput 74:1090–1107. https://doi.org/10.1007/s11227-016-1799-3

    Article  Google Scholar 

  25. Mellier R., Myoupo J. F. and Ravelomanana V. (2004) A non-token-based-distributed mutual exclusion algorithm for single-hop Mobile ad hoc networks. In: Belding-Royer E.M., Al agha K., Pujolle G. (eds). Mobile and wireless communication networks. MWCN. IFIP International Federation for Information Processing, volume 162. Springer, Boston, MA. https://doi.org/10.1007/0-387-23150-1_25

  26. Muzaffar R, Yanmaz E, Raffelsberger C, Bettstetter C, Cavallaro A (2020) Live multicast video streaming from drones: an experimental study. Auton Robot 44:75–91. https://doi.org/10.1007/s10514-019-09851-6

    Article  Google Scholar 

  27. Parihar AS, Chakraborty SK (2021) Token-based approach in distributed mutual exclusion algorithms: a review and direction to future research. J Supercomput 77:14305–14355. https://doi.org/10.1007/s11227-021-03802-8

    Article  Google Scholar 

  28. Parihar AS, Prasad D, Gautam AS, Chakraborty SK (2021) Proposed end-to-end automated E-voting through Blockchain technology to increase Voter’s turnout. In: Prateek M, Singh TP, Choudhury T, Pandey HM, Gia NN (eds) Proceedings of international conference on machine intelligence and data science applications. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-33-4087-9_5

    Chapter  Google Scholar 

  29. Pokorný J. (2015) Graph databases: their power and limitations. In: Saeed K., Homenda W. (eds) computer information systems and industrial management. CISIM, lecture notes in computer science, volume 9339, https://doi.org/10.1007/978-3-319-24369-6_5

  30. Sang Q, Wu H, Xing L, Xie P (2020) Review and comparison of emerging routing protocols in flying ad hoc networks. Symmetry 12(6). https://doi.org/10.3390/sym12060971

  31. Parihar AS, Chakraborty SK (2022) A simple R-UAV permission-based distributed mutual exclusion in FANET. Wireless Network 28:779–795. https://doi.org/10.1007/s11276-022-02889-y

  32. Shakhatreh H, Sawalmeh AH, al-Fuqaha A, Dou Z, Almaita E, Khalil I, Othman NS, Khreishah A, Guizani M (2019) Unmanned aerial vehicles (UAVs): a survey on civil applications and key research challenges. IEEE Access 7:48572–48634. https://doi.org/10.1109/ACCESS.2019.2909530

    Article  Google Scholar 

  33. Sharma B., Bhatia R. S. and Singh A. K. (2011) An O(1/n) protocol for supporting distributed mutual exclusion in vehicular ad hoc networks. In: Nagamalai D., Renault E., Dhanuskodi M. (eds) advances in parallel distributed computing. PDCTA. Communications in Computer and Information Science, volume 203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24037-9_14

  34. Shehu HA, Sharif MH, Ramadan RA (2020) Distributed mutual exclusion algorithms for intersection traffic problems. IEEE Access 8:138277–138296. https://doi.org/10.1109/ACCESS.2020.3012573

    Article  Google Scholar 

  35. Singhal M. and Manivannan D. (1997) A distributed mutual exclusion algorithm for mobile computing environments. Proceed Intell Inform Syst. pp. 557-561, https://doi.org/10.1109/IIS.1997.645389

  36. Srivastava A, Prakash J (2021) Future FANET with application and enabling techniques: anatomization and sustainability issues. Comp Sci Rev 39:100359. https://doi.org/10.1016/j.cosrev.2020.100359

    Article  MathSciNet  Google Scholar 

  37. Tamhane SA, Kumar M (2012) A token based distributed algorithm for supporting mutual exclusion in opportunistic networks. Pervasive Mobile Comput 8(5):795–809. https://doi.org/10.1016/j.pmcj.2011.08.002

    Article  Google Scholar 

  38. Thiare O. (2012) A token-based group mutual exclusion algorithm for MANETs. In: Kim T., Ko D., Vasilakos T., Stoica a., Abawajy J. (eds) computer applications for communication, networking, and digital contents. FGCN. Communications in Computer and Information Science, volume 350. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35594-3_34

  39. Thiare O, Naimi M, Gueroui M (2007) A group mutual exclusion algorithm for Mobile ad hoc networks. In: Sobh T (ed) Innovations and advanced techniques in computer and information sciences and engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6268-1_67

    Chapter  Google Scholar 

  40. Walter JE, Welch JL, Vaidya NH (2001) A mutual exclusion algorithm for ad hoc Mobile networks. Wirel Netw 7:585–600. https://doi.org/10.1023/A:1012363200403

    Article  MATH  Google Scholar 

  41. Wu W., Cao J. and Raynal M. (2007) A dual-token-based fault tolerant mutual exclusion algorithm for MANETs. In: Zhang H., Olariu S., Cao J., Johnson D.B. (eds) Mobile ad-hoc and sensor networks. MSN. Lecture notes in computer science, volume 4864. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77024-4_52

  42. Wu W, Cao J, Yang J (2008) A fault tolerant mutual exclusion algorithm for mobile ad hoc networks. Pervasive Mob Comput 4(1):139–160. https://doi.org/10.1016/j.pmcj.2007.08.001

    Article  Google Scholar 

  43. Wu W, Zhang J, Luo A, Cao J (2015) Distributed mutual exclusion algorithms for intersection traffic control. IEEE Trans Parall Distributed Syst 26(1):65–74. https://doi.org/10.1109/tpds.2013.2297097

    Article  Google Scholar 

  44. Zaki A, Attia M, Hegazy D, Amin S Comprehensive Survey on Dynamic Graph Models. Int J Adv Comp Sci Appl (IJACSA) 7(2). https://doi.org/10.14569/IJACSA.2016.070273

  45. Zhang X., Moore C. and Newman M. E. J. (2017) Random graph models for dynamic networks. Eur. Phys. J. B. 90: https://doi.org/10.1140/epjb/e2017-80122-8

  46. Zheng W, Song LX, Mei'an L (2007) Ad hoc distributed mutual exclusion algorithm based on token-asking. J Syst Eng Electron 18(2):398–406. https://doi.org/10.1016/S1004-4132(07)60104-2

    Article  MATH  Google Scholar 

Download references

Funding

This study was not funded by any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Singh Parihar.

Ethics declarations

Conflict of interest

The authors have no conflict of interest in relation to this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix-I (Symbol notations)

Symbol

Description

N

Number of nodes in the network

βr

The arrival rate of the Poisson process

Maximum delay in-between node to node communication

g

Upper bound limit of messages generated by a node

αx

Traversing cost of an Ad hoc from node x

βx^y

Switch between x and y

λ

Average time unit for message generation by a node after CS release

δ

Broadcast message

ε

Request message

ζ

Request acknowledge message

η

Permission message

θ

Token message

ι

Total number of CS to be invoked simultaneously in the system

T

The propagation time of a message

Appendix-II (List of Abbreviations)

FANET

Flying ad hoc network

MANET

Mobile ad hoc network

VANET

Vehicular ad hoc network

UAV

Unmanned aerial vehicle

DME

Distributed mutual exclusion

DS

Distributed system

CS

Critical section

RL

Reverse link

DAG

Directed acyclic graph

MRME

Mobile resource mutual exclusion

DCGM

Dynamic chain graph model

WN

Wireless node

CR

Communication range

EA

Edge addition

ED

Edge deletion

NA

Node addition

ND

Node deletion

RC_UAV

Resource centric UAV

BFS

Breath first search

DFS

Depth first search

LP

Logic programming

AI

Artificial intelligence

DSt

Data Structure

DB

Data bases

GG

Graph games

C-FG

Chip-Firing Games

DGM

Distributed graph modeling

FTN

Forecasting traffic network

FP

Forecast performance

GE

Gene expression

OP

Optimization problems

IG

Internet graph

FN

Friendship network

PN

Proximity network

ETN

Extract temporal node

DLP

Dynamic Link prediction

RS

Recommender systems

TP

Time Prediction

DSoSG

Discrete sequence of static graphs

CFM

Classical flow model

TM

Threshold model

SoS

Sequence of snapshots

LFM

Log file model

R-o

Re-optimization

RGM

Random graph model

MLwGF

Machine learning with graph factorization

SW

Stream walk

E-DM

Encode-Decode model

I/DDA

Incremental/Decremental dynamic algorithm

C

Compiler

SNwTI

Static network with time instances

RN

Resource network

R-WN

Real-world networks

TSN

Time series network

TDN

Time dependent networks

SyN

Synthetic networks

TN

Temporal networks

HN

Heterogeneous network

SN

Social networks

CN

Communication networks

TrN

Transportation networks

L

Labeling

MPD

Message propagation delay

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parihar, A.S., Chakraborty, S.K. Handling of resource allocation in flying ad hoc network through dynamic graph modeling. Multimed Tools Appl 81, 18641–18669 (2022). https://doi.org/10.1007/s11042-022-11950-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-11950-z

Keywords

Navigation