Skip to main content
Log in

Lateralized modulation brought by discrepancy speed ratios of left and right arm movements during human action observation: an EEG study

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The left and right movements of a human or humanoid robot as an action observation stimulus will activate the human mirror neuron system (hMNS) to generate contralateral event-related desynchronization (ERD) suppression of the brain. The activation of hMNS response to action observation remains controversial for several reasons. Researches have found the influence of different speed factor for brain’s ERD suppression, but lack of exploring the influence of different speed discrepancy of left and right movements. To explore how is the discrepancy movements of left and right under different speeds influence ERD suppression, this paper invited six healthy subjects to participate action observation experiment under four different speeds (low, moderate, fast, and finalistic). Meanwhile, four different discrepancy speed ratios of movements are applied for such four different speeds to explore the influence of speed discrepancy on the left and right for the hMNS lateralized modulation effect. For the recorded electroencephalography (EEG) signals under different action observation stimulus, this paper selected the occipital and sensorimotor brain regions and used the convolutional neural network to classify EEG signals and measure the ERD suppression. Experimental results have shown that the action observation stimulus with different speed discrepancies improved the lateralized activity during low and moderate speeds, and significantly improved the lateralized activity than non-discrepancy during fast and finalistic speeds. We also analyzed the temporal, spectral, and classification characteristics for speed discrepancy, and discussed that the stimulus material design with speed discrepancy could greatly improve the lateralized modulation of ERD suppression. Action observation material with speed discrepancy of left and right movements could generate significant ERD suppression differences on lateralization of the brain, which could be used to build a more complex and robust brain-computer interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adcock J, Wise RG, Oxbury J et al (2003) Quantitative fmri assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. Neuroimage 18(2):423–438

    Article  Google Scholar 

  2. Aflalo T, Kellis S, Klaes C, Lee B, Shi Y, Pejsa K, Shanfield K, Hayes-Jackson S, Aisen M, Heck C, Liu C, Andersen RA (2015) Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science 348(6237):906–910

    Article  Google Scholar 

  3. Ang KK, Chin ZY, Wang C, Guan C, Zhang H (2012) Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b. Front Neurosci 6:39

    Article  Google Scholar 

  4. Aziz-Zadeh L, Maeda F, Zaidel E, Mazziotta J, Iacoboni M (2002) Lateralization in motor facilitation during action observation: a tms study. Exp Brain Res 144(1):127–131

    Article  Google Scholar 

  5. Aziz-Zadeh L, Iacoboni M, Zaidel E, Wilson S, Mazziotta J (2004) Left hemisphere motor facilitation in response to manual action sounds. Eur J Neurosci 19(9):2609–2612

    Article  Google Scholar 

  6. Aziz-Zadeh L, Koski L, Zaidel E, Mazziotta J, Iacoboni M (2006) Lateralization of the human mirror neuron system. J Neurosci 26(11):2964–2970

    Article  Google Scholar 

  7. Aziz-Zadeh L, Iacoboni M, Zaidel E (2006) Hemispheric sensitivity to body stimuli in simple reaction time. Exp Brain Res 170(1):116–121

    Article  Google Scholar 

  8. Aziz-Zadeh L, Liew SL, Dandekar F (2012) Exploring the neural correlates of visual creativity. Soc Cogn Affect Neurosci 8(4):475–480

    Article  Google Scholar 

  9. Barham MP, Clark GM, Hayden MJ, Enticott PG, Conduit R, Lum JAG (2017) Acquiring research-grade erps on a shoestring budget: a comparison of a modified emotiv and commercial synamps eeg system. Psychophysiology 54(9):1393–1404

    Article  Google Scholar 

  10. Belitski A, Farquhar J, Desain P (2011) P300 audio-visual speller. Journal of Neural Engineering 8(2):025022

    Article  Google Scholar 

  11. Bentin S, McCarthy G, Wood CC (1985)Event-related potentials, lexical decision and semantic priming. Electroencephalogr Clin Neurophysiol 60(4):343–355

    Article  Google Scholar 

  12. Bianco V, Di Russo F, Perri RL et al (2017) Different proactive and reactive action control in fencers’ and boxers’ brain. Neuroscience 343:260–268

    Article  Google Scholar 

  13. Bianco V, Berchicci M, Perri RL et al (2017) The proactive self-control of actions: Time-course of underlying brain activities. NeuroImage 156:388–393

    Article  Google Scholar 

  14. Bolognini N, Russo C, Edwards DJ (2016) The sensory side of poststroke motor rehabilitation. Restor Neurol Neurosci 34(4):571–586

    Google Scholar 

  15. Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fmri study. Eur J Neurosci 13(2):400–404

    Google Scholar 

  16. Caligiore D, Mustile M, Spalletta G (2017) Action observation and motor imagery for rehabilitation in Parkinson’s disease: a systematic review and an integrative hypothesis. Neurosci Biobehav Rev 72:210–222

    Article  Google Scholar 

  17. Calvo-Merino B, Glaser DE, Grèzes J, Passingham RE, Haggard P (2004) Action observation and acquired motor skills: an fmri study with expert dancers. Cereb Cortex 15(8):1243–1249

    Article  Google Scholar 

  18. Caspers S, Zilles K, Laird AR, Eickhoff SB (2010) Eickhoff.Ale meta-analysis of action observation and imitation in the human brain. Neuroimage 50(3):1148–1167

    Article  Google Scholar 

  19. Claflin ES, Krishnan C, Khot SP (2015) Emerging treatments for motor rehabilitation after stroke. Neurohospitalist 5(2):77–88

    Article  Google Scholar 

  20. Coll MP, Press C, Hobson H, Catmur C, Bird G (2017) Crossmodal classification of mu rhythm activity during action observation and execution suggests specificity to somatosensory features of actions. J Neurosci 37(24):5936–5947

    Article  Google Scholar 

  21. Cristina LM, Matei D, Ignat B (2015) Mirror therapy enhances upper extremity motor recovery in stroke patients. Acta Neurol Belg 115(4):597–603

    Article  Google Scholar 

  22. Di Dio C, Ardizzi M, Massaro D et al (2016) Human, nature, dynamism: the effects of content and movement perception on brain activations during the aesthetic judgment of representational paintings. Front Hum Neurosci 9:705

    Google Scholar 

  23. Donati AR, Shokur S, Morya E et al (2016) Longterm training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci Rep 6:30383

    Article  Google Scholar 

  24. Donchin E, Spencer KM, Wijesinghe R (2000) The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans Rehab Eng 8(2):174–179

    Article  Google Scholar 

  25. Eaves DL, Riach M, Holmes PS, Wright DJ (2016) Motor imagery during action observation: a brief review of evidence, theory and future research opportunities. Front Neurosci 10:514

    Article  Google Scholar 

  26. Ehrsson HH, Geyer S, Naito E (2003) Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. J Neurophysiol 90(5):3304–3316

    Article  Google Scholar 

  27. El-Sourani N, Wurm MF, Trempler I et al (2018) Schubotz. Making sense of objects lying around: How contextual objects shape brain activity during action observation Neuroimage 167:429–437

    Google Scholar 

  28. Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73(6):2608–2611

    Article  Google Scholar 

  29. Fox NA, Bakermans-Kranenburg MJ, Yoo KH et al (2016) Assessing human mirror activity with eeg mu rhythm: A meta-analysis. Psychological Bulletin 142(3):291

    Article  Google Scholar 

  30. Gallivan JP, Culham JC (2015) Neural coding within human brain areas involved in actions. Curr Opin Neurobiol 33:141–149

    Article  Google Scholar 

  31. Gazzola V, Aziz-Zadeh L, Keysers C (2006) Empathy and the somatotopic auditory mirror system in humans. Curr Biol 16(18):1824–1829

    Article  Google Scholar 

  32. Häberling IS, Corballis PM, Corballis MC (2016) Language, gesture, and handedness: Evidence for independent lateralized networks. Cortex 82:72–85

    Article  Google Scholar 

  33. Hajipour Sardouie S, Shamsollahi MB (2012) Selection of efficient features for discrimination of hand movements from meg using a bci competition iv data set. Front Neurosci 6:42

    Article  Google Scholar 

  34. Hardwick RM, Caspers S, Eickhoff SB, Swinnen SP (2018) Neural correlates of action: comparing meta-analyses of imagery, observation, and execuion. Neuroscience & Biobehavioral Reviews 94:31–44

    Article  Google Scholar 

  35. Holmes PS, Wright DJ (2017) Motor cognition and neuroscience in sport psychology. Curr Opin Psychol 16:43–47

    Article  Google Scholar 

  36. Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift .arXiv preprint arXiv. 1502.03167

  37. Kelly R, Mizelle J, Wheaton LA (2015) Distinctive laterality of neural networks supporting action understanding in left-and right-handed individuals: an eeg coherence study. Neuropsychologia 75:20–29

    Article  Google Scholar 

  38. Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv 1412.6980

  39. Koul A, Cavallo A, Cauda F, Costa T, Diano M, Pontil M, Becchio C (2018) Action observation areas represent intentions from subtle kinematic features. Cereb Cortex 28(7):2647–2654

    Article  Google Scholar 

  40. Lange J, Pavlidou A, Schnitzler A (2015) Lateralized modulation of beta-band power in sensorimotor areas during action observation. Front Integr Neurosci 9:43

    Article  Google Scholar 

  41. Lapergue B, Blanc R, Guedin P, Decroix JP, Labreuche J, Preda C, Bartolini B, Coskun O, Redjem H, Mazighi M, Bourdain F, Rodesch G, Piotin M (2016) A direct aspiration, first pass technique (adapt) versus stent retrievers for acute stroke therapy: an observational comparative study. Am J Neuroradiol 37(10):1860–1865

    Article  Google Scholar 

  42. Lim H, Ku J (2018) A brain–computerinterface-based action observation game that enhances mu suppression. IEEE Trans Neural Syst Rehab Eng 26(12):2290–2296

    Article  Google Scholar 

  43. Lingnau A, Downing PE (2015) The lateral occipitotemporal cortex in action. Trends Cogn Sci 19(5):268–277

    Article  Google Scholar 

  44. Liu M, Wu W, Gu Z, Yu Z, Qi FF, Li Y (2018) Deep learning based on batch normalization for p300 signal detection. Neurocomputing 275:288–297

    Article  Google Scholar 

  45. Lu N, Li T, Ren X, Miao H (2016) A deep learning scheme for motor imagery classification based on restricted boltzmann machines. IEEE Transactions on Neural Systems and Rehabilitation Engineering 25(6):566–576

    Article  Google Scholar 

  46. Luo T, Lv J, Chao F, Zhou C (2018) Effect of different movement speed modes on human action observation: an eeg study. Front Neurosci 12:219

    Article  Google Scholar 

  47. Luo T, Chao F, Zhou C (2018) Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network. BMC Bioinformatics 19(1):344

    Article  Google Scholar 

  48. M Mahsereci, L Balles, C Lassner et al (2017) Early stopping without a validation set. arXiv preprint arXiv, vol. 1703.09580.

  49. Mäki-Marttunen V, Villarreal M, Leiguarda RC (2014) Lateralization of brain activity during motor planning of proximal and distal gestures. Behav Brain Res 272:226–237

    Article  Google Scholar 

  50. Marangon M, Priftis K, Fedeli M et al (2014) Lateralization of motor cortex excitability in stroke patients during action observation: a tms study. BioMed Research International 2014

  51. Marcroft C, Khan A, Embleton ND, Trenell M, Plötz T (2015) Movement recognition technology as a method of assessing spontaneous general movements in high risk infants. Front Neurol 5:284

    Article  Google Scholar 

  52. Nouchine H, Joseph RM, Josh S et al (2006) Anatomical differences in the mirror neuron system and social cognition network in autism. Cereb Cortex 16(9):1276–1282

    Article  Google Scholar 

  53. Park EC, Hwangbo G (2015) The effects of action observation gait training on the static balance and walking ability of stroke patients. J Phys Ther Sci 27(2):341–344

    Article  Google Scholar 

  54. Pattnaik S, Dash M, Sabut S (2016)Dwt-based feature extraction and classification for motor imaginary eeg signals. In: The 2016 international conference on Systems in Medicine and Biology (ICSMB). IEEE, Kharagpur, pp 186–201

    Chapter  Google Scholar 

  55. Pereira J, Ofner P, Schwarz A, Sburlea AI, Müller-Putz GR (2017) Eeg neural correlates of goal-directed movement intention. Neuroimage 149:129–140

    Article  Google Scholar 

  56. Pichiorri F, Morone G, Petti M, Toppi J, Pisotta I, Molinari M, Paolucci S, Inghilleri M, Astolfi L, Cincotti F, Mattia D (2015)Brain–computer interface boosts motor imagery practice during stroke recovery. Ann Neurol 77(5):851–865

    Article  Google Scholar 

  57. Pineda JA (2008) Sensorimotor cortex as a critical component of an’extended’mirror neuron system: Does it solve the development, correspondence, and control problems in mirroring? Behavioral and Brain Functions 4(1):47

    Article  Google Scholar 

  58. Pot E, Monceaux J, Gelin R et al (2009) Choregraphe: a graphical tool for humanoid robot programming. In: The 18th IEEE international symposium on robot and human interactive communication. IEEE, Roman, pp 46–51

    Google Scholar 

  59. Rakotomamonjy A, Guigue V (2008) Bci competition iii: dataset iiensemble of svms for bci p300 speller. IEEE Trans Biomed Eng 55(3):1147–1154

    Article  Google Scholar 

  60. Ravi A, Beni NH, Manuel J et al (2020) Comparing user-dependent and user-independent training of CNN for SSVEP BCI. J Neural Eng 17(2):026028

    Article  Google Scholar 

  61. Richard L, Charbonneau D (2009) An introduction to e-prime. Tutorials in Quantitative Methods for Psychology 5(2):68–76

    Article  Google Scholar 

  62. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  Google Scholar 

  63. Rizzolatti G, Sinigaglia C (2016) The mirror mechanism: a basic principle of brain function. Nature Reviews Neuroscience 17(12):757

    Article  Google Scholar 

  64. Saitoh T, Zhou Z, Zhao G et al (2016) Concatenated frame image based cnn for visual speech recognition. In: The 13th proceedings of the Asian conference on computer vision. Springer, Taipei, pp 277–289

    Google Scholar 

  65. Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann M, Hutter F, Burgard W, Ball T (2017) Deep learning with convolutional neural networks for eeg decoding and visualization. Hum Brain Mapp 38(11):5391–5420

    Article  Google Scholar 

  66. Schlögl A, Keinrath C, Zimmermann D, Scherer R, Leeb R, Pfurtscheller G (2007) A fully automated correction method of eog artifacts in eeg recordings. Clin Neurophysiol 118(1):98–104

    Article  Google Scholar 

  67. Shanechi MM, Orsborn AL, Carmena JM (2016) Robust brainmachine interface design using optimal feedback control modeling and adaptive point process filtering. PLoS Comput Biol 12(4):e1004730

    Article  Google Scholar 

  68. Son J, Ku J (2019) Development of brain computer interface based action observation program with functional electrical stimulation device (fes). In: The 7th international winter conference on brain-computer Interface (BCI). IEEE, Gangwon, pp 1–2

    Google Scholar 

  69. Srivastava N, Hinton G, Krizhevsky A et al (2017) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  MATH  Google Scholar 

  70. Stevens C, Paulsen D, Yasen A, Neville H (2015) Atypical auditory refractory periods in children from lower socio-economic status backgrounds: Erp evidence for a role of selective attention. Int J Psychophysiol 95(2):156–166

    Article  Google Scholar 

  71. Stock AK, Ness V, Beste C (2015) Complex sensorimotor transformation processes required for response selection are facilitated by the striatum. Neuroimage 123:33–41

    Article  Google Scholar 

  72. Tabar YR, Halici U (2016) A novel deep learning approach for classification of eeg motor imagery signals. Journal of Neural Engineering 14(1):016003

    Article  Google Scholar 

  73. Tangermann M, Müller K-R, Aertsen A, Birbaumer N, Braun C, Brunner C, Leeb R, Mehring C, Miller KJ, Müller-Putz GR, Nolte G, Pfurtscheller G, Preissl H, Schalk G, Schlögl A, Vidaurre C, Waldert S, Blankertz B (2012) Review of the bci competition iv. Front Neurosci 6:55

    Article  Google Scholar 

  74. Te H, Yan-Fu L, Min Q (2021) A hybrid generalization network for intelligent fault diagnosis of rotating machinery under unseen working conditions. IEEE Trans Instrum Meas 70:3520011

    Google Scholar 

  75. Trottier L, Gigu P, Chaib-draa B et al (2017) Parametric exponential linear unit for deep convolutional neural networks. In: The 16th IEEE international conference on machine learning and applications (ICMLA). IEEE, Cancun, pp 207–214

    Google Scholar 

  76. Tuma T, Pantazi A, Le Gallo M et al (2016) Stochastic phase-change neurons. Nature Nanotechnology 11(8):693

    Article  Google Scholar 

  77. Varnum ME, Blais C, Brewer GA (2016) Brewer.Social class affects musuppression during action observation. Soc Neurosci 11(4):449–454

    Article  Google Scholar 

  78. Wu T, Hou Y, Hallett M, Zhang J, Chan P (2015) Lateralization of brain activity pattern during unilateral movement in parkinson’s disease. Hum Brain Mapp 36(5):1878–1891

    Article  Google Scholar 

  79. Xiaochen Z, He Z, Zhongliang Z et al (2021) Performance degradation analysis and fault prognostics of solid oxide fuel cells using the data-driven method. Int J Hydrog Energy 46:18511–18523

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China under Grant (No. 62106049, No. 61673322). The funding body played the role in supporting the experiments. The author wants to thank the members of the digital Fujian internet-of-thing laboratory of environmental monitoring in Fujian Normal University, and the brain-like robotic research group of Xiamen University for their proofreading comments. The author is very grateful to the anonymous reviewers for their constructive comments which have helped significantly in revising this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-jian Luo.

Ethics declarations

Conflict of interest

All authors disclosed no relevant relationships.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Tj., Zhou, C. Lateralized modulation brought by discrepancy speed ratios of left and right arm movements during human action observation: an EEG study . Multimed Tools Appl 81, 17567–17594 (2022). https://doi.org/10.1007/s11042-022-11971-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-11971-8

Keywords

Navigation