Skip to main content

Advertisement

Log in

Texture image classification based on a pseudo-parabolic diffusion model

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This work proposes a novel method based on a pseudo-parabolic diffusion process to be employed for texture recognition. The proposed operator is applied over a range of time scales giving rise to a family of images transformed by nonlinear filters. Therefore each of those images are encoded by a local descriptor (we use local binary patterns for that purpose) and they are summarized by a simple histogram, yielding in this way the image feature vector. Three main novelties are presented in this manuscript: (1) The introduction of a pseudo-parabolic model associated with the signal component of binary patterns to the process of texture recognition and a real-world application to the problem of identifying plant species based on the leaf surface image. (2) We also introduce a simple and efficient discrete pseudo-parabolic differential operator based on finite differences as texture descriptors. While the work in [26] uses complete local binary patterns, here we use the original version of the local binary pattern operator. (3) We also discuss, in more general terms, the possibilities of exploring pseudo-parabolic models for image analysis as they balance two types of processing that are fundamental for pattern recognition, i.e., they smooth undesirable details (possibly noise) at the same time that highlight relevant borders and discontinuities anisotropically. Besides the practical application, the proposed approach is also tested on the classification of well established benchmark texture databases. In both cases, it is compared with several state-of-the-art methodologies employed for texture recognition. Our proposal outperforms those methods in terms of classification accuracy, confirming its competitiveness. The good performance can be justified to a large extent by the ability of the pseudo-parabolic operator to smooth possibly noisy details inside homogeneous regions of the image at the same time that it preserves discontinuities that convey critical information for the object description. Such results also confirm that model-based approaches like the proposed one can still be competitive with the omnipresent learning-based approaches, especially when the user does not have access to a powerful computational structure and a large amount of labeled data for training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abreu E, Florindo JB (2021) A study on a feedforward neural network to solve partial differential equations in hyperbolic-transport problems. In: International conference on computational science. Springer, pp 398–411

  2. Abreu E, Vieira J (2017) Computing numerical solutions of the pseudo-parabolic Buckley–Leverett equation with dynamic capillary pressure. Math Comput Simul 137:29–48

    Article  MathSciNet  MATH  Google Scholar 

  3. Abreu E, Ferraz P, Vieira J (2020) Numerical resolution of a pseudo-parabolic Buckley-Leverett model with gravity and dynamic capillary pressure in heterogeneous porous media. J Comput Phys 411:109395

    Article  MathSciNet  MATH  Google Scholar 

  4. Ahonen T, Matas J, He C, Pietikäinen M (2009) Rotation invariant image description with local binary pattern histogram fourier features. In: Salberg AB, Hardeberg JY, Jenssen R (eds) Image analysis. Springer, Berlin, Heidelberg, pp 61–70

  5. Barros Neiva M, Guidotti P, Bruno OM (2018) Enhancing LBP by preprocessing via anisotropic diffusion. Int J Modern Phys C 29(08):1850071

    Article  Google Scholar 

  6. Bounik Z, Shamsi M, Sedaaghi MH (2020) Accurate coarse soft tissue modeling using FEM-based fine simulation. Multimed Tools Appl 79(11):7121–7134

    Article  Google Scholar 

  7. Bruna J, Mallat S (2013) Invariant scattering convolution networks. IEEE Trans Pattern Anal Mach Intell 35(8):1872–1886

    Article  Google Scholar 

  8. Brunton SL, Noack BR, Koumoutsakos P (2020) Machine learning for fluid mechanics. Annu Rev Fluid Mech 52:477–508

    Article  MATH  Google Scholar 

  9. Casanova D, de Mesquita Sá Junior JJ, Bruno OM (2009) Plant leaf identification using Gabor wavelets. Int J Imaging Syst Technol 19(3):236–243

    Article  Google Scholar 

  10. Catté F, Lions PL, Morel JM, Coll T (1992) Image selective smoothing and edge detection by nonlinear diffusion. SIAM J Numer Anal 29(1):182–193

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan T, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) PCANet: A simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032

    Article  MathSciNet  MATH  Google Scholar 

  12. Chatterjee AN, Ahmad B (2021) A fractional-order differential equation model of COVID-19 infection of epithelial cells. Chaos, Solitons Fractals 147:110952

    Article  MathSciNet  MATH  Google Scholar 

  13. Chavent G, Roberts J (1991) A unified physical presentation of mixed, mixed-hybrid finite elements and standard finite difference approximations for the determination of velocities in waterflow problems. Adv Water Resour 14 (6):329–348

    Article  Google Scholar 

  14. Cimpoi M, Maji S, Kokkinos I, Mohamed S, Vedaldi A (2014) Describing textures in the wild. In: Proceedings of the 2014 IEEE conference on computer vision and pattern recognition, CVPR ’14. IEEE Computer Society, Washington, DC, USA, pp 3606–3613

  15. Cimpoi M, Maji S, Kokkinos I, Vedaldi A (2016) Deep filter banks for texture recognition, description, and segmentation. Int J Comput Vis 118 (1):65–94

    Article  MathSciNet  Google Scholar 

  16. Condori RHM, Bruno OM (2021) Analysis of activation maps through global pooling measurements for texture classification. Inform Sci 555:260–279. https://doi.org/10.1016/j.ins.2020.09.058

    Article  MathSciNet  Google Scholar 

  17. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Article  MATH  Google Scholar 

  18. Cottet GH, Germain L (1993) Image processing through reaction combined with nonlinear diffusion. Math Comp 61(1):659–673

    Article  MathSciNet  MATH  Google Scholar 

  19. Cuesta C, Hulshof J (2003) A model problem for groundwater flow with dynamic capillary pressure: stability of travelling waves. Nonlinear Anal Theory Methods Appl 52(4):1199–1218

    Article  MathSciNet  MATH  Google Scholar 

  20. Cuesta C, Pop I (2009) Numerical schemes for a pseudo-parabolic burgers equation: discontinuous data and long-time behaviour. J Comput Appl Math 224:269–283

    Article  MathSciNet  MATH  Google Scholar 

  21. Dai X, Ng JY, Davis LS (2017) FASON: First and second order information fusion network for texture recognition. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). https://doi.org/10.1109/CVPR.2017.646, pp 6100–6108

  22. Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) DeCAF: A deep convolutional activation feature for generic visual recognition. In: Proceedings of the 31st international conference on international conference on machine learning, JMLR.org, ICML’14, vol 32, pp I–647–I–655

  23. Dong X, Zhou H, Dong J (2020) Texture classification using pair-wise difference pooling-based bilinear convolutional neural networks. IEEE Trans Image Process 29:8776–8790. https://doi.org/10.1109/TIP.2020.3019185

    Article  MATH  Google Scholar 

  24. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188

    Article  Google Scholar 

  25. Florindo JB (2020) DSTNet: Successive applications of the discrete schroedinger transform for texture recognition. Inf Sci 507:356–364

    Article  Google Scholar 

  26. Florindo JB, Abreu E (2021) An application of a pseudo-parabolic modeling to texture image recognition. In: International conference on computational science. Springer, pp 386–397

  27. Florindo JB, Bruno OM (2016) Local fractal dimension and binary patterns in texture recognition. Pattern Recogn Lett 78:22–27

    Article  Google Scholar 

  28. Florindo JB, Bruno OM (2017) Discrete Schroedinger transform for texture recognition. Inform Sci 415:142–155

    Article  MATH  Google Scholar 

  29. Ghazouani H, Barhoumi W (2020) Genetic programming-based learning of texture classification descriptors from local edge signature. Expert Syst Appl 161:113667

    Article  Google Scholar 

  30. Gonçalves WN, da Silva NR, da Fontoura Costa L, Bruno OM (2016) Texture recognition based on diffusion in networks. Inform Sci 364(C):51–71

    Article  Google Scholar 

  31. Guidotti P (2009) A new nonlocal nonlinear diffusion of image processing. J Differ Equ 246(12):4731–4742

    Article  MathSciNet  MATH  Google Scholar 

  32. Guidotti P, Kim Y, Lambers J (2013) Image restoration with a new class of forward-backward-forward diffusion equations of Perona–Malik type with applications to satellite image enhancement. SIAM J Imaging Sci 6(3):1416–1444

    Article  MathSciNet  MATH  Google Scholar 

  33. Guo Z, Zhang L, Zhang D (2010b) Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recogn 43 (3):706–719

    Article  MATH  Google Scholar 

  34. Haralick R, Shanmugam K, Dinstein I (1973) Texture features for image classification. IEEE Trans Syst Man Cybern 3(6)

  35. Hassanizadeh S, Gray W (1993) Thermodynamic basis of capillary pressure in porous media. Water Resour Res 29:3389–3405

    Article  Google Scholar 

  36. Hayman E, Caputo B, Fritz M, Eklundh JO (2004) On the significance of real-world conditions for material classification. In: Pajdla T, Matas J (eds) Computer vision - ECCV 2004. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 253–266

  37. Ho TK (1995) Random decision forests. In: Proceedings of the third international conference on document analysis and recognition (Volume 1) - Volume 1, ICDAR ’95. IEEE Computer Society, Washington, DC, USA, p 278

  38. Jasionowska M, Przelaskowski A (2019) Wavelet-like selective representations of multidirectional structures: a mammography case. Pattern Anal Appl 22(4):1399–1408

    Article  MathSciNet  Google Scholar 

  39. Kannala J, Rahtu E (2012) BSIF: Binarized statistical image features. In: ICPR. IEEE Computer Society, pp 1363–1366

  40. Karch G (1997) Asymptotic behaviour of solutions to some pseudoparabolic equations. Math Methods Appl Sci 20(3):271–289

    Article  MathSciNet  MATH  Google Scholar 

  41. Koenderink JJ (1984) The structure of images. Biol Cybern 50 (5):363–370

    Article  MathSciNet  MATH  Google Scholar 

  42. Kollem S, Reddy KR, Rao DS (2021a) Improved partial differential equation-based total variation approach to non-subsampled contourlet transform for medical image denoising. Multimed Tools Appl 80(2):2663–2689

    Article  Google Scholar 

  43. Kollem S, Reddy KR, Rao DS (2021a) An optimized SVM based possibilistic fuzzy c-means clustering algorithm for tumor segmentation. Multimed Tools Appl 80(1):409–437

    Article  Google Scholar 

  44. Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27(8):1265–1278

    Article  Google Scholar 

  45. Li D, Deng L, Cai Z (2021) Research on image classification method based on convolutional neural network. Neural Comput Appl 33(14):8157–8167

    Article  Google Scholar 

  46. Liu L, Zhao L, Long Y, Kuang G, Fieguth P (2012) Extended local binary patterns for texture classification. Image Vision Comput 30(2):86–99

    Article  Google Scholar 

  47. Liu L, Fieguth P, Guo Y, Wang X, Pietikäinen M (2017) Local binary features for texture classification: Taxonomy and experimental study. Pattern Recogn 62:135–160

    Article  Google Scholar 

  48. Liu L, Chen J, Fieguth PW, Zhao G, Chellappa R, Pietikäinen M (2019) From BoW to CNN: Two decades of texture representation for texture classification. Int J Comput Vis 127(1):74–109

    Article  Google Scholar 

  49. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  50. Lu L, Meng X, Mao Z, Karniadakis GE (2021) DeepXDE: A deep learning library for solving differential equations. SIAM Rev 63(1):208–228

    Article  MathSciNet  MATH  Google Scholar 

  51. Naik DL, Khan R (2019) Identification and characterization of fracture in metals using machine learning based texture recognition algorithms. Eng Fract Mech 219

  52. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  53. Pearson FK (1901) LIII on lines and planes of closest fit to systems of points in space. The Lond Edinb Dublin Philos Mag J Sci 2(11):559–572

    Article  MATH  Google Scholar 

  54. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639

    Article  Google Scholar 

  55. Perronnin F, Sánchez J, Mensink T (2010) Improving the Fisher kernel for large-scale image classification. In: Proceedings of the 11th european conference on computer vision: Part IV, ECCV’10. Springer-Verlag, Berlin, Heidelberg, pp 143–156

  56. Safdar A, Khan MA, Shah JH, Sharif M, Saba T, Rehman A, Javed K, Khan JA (2019) Intelligent microscopic approach for identification and recognition of citrus deformities. Microsc Res Tech 82(9):1542–1556

    Article  Google Scholar 

  57. Showalter R (1969) Partial differential equations of Sobolev-Galpern type. Pac J Math 31(3):787–793

    Article  MathSciNet  MATH  Google Scholar 

  58. Showalter R (1975) A nonlinear parabolic-Sobolev equation. J Math Anal Appl 50(1):183–190

    Article  MathSciNet  MATH  Google Scholar 

  59. Showalter R, Ting T (1970) Pseudoparabolic partial differential equations. SIAM J Math Anal 1(1):1–26

    Article  MathSciNet  MATH  Google Scholar 

  60. Song T, Li H, Meng F, Wu Q, Cai J (2018) LETRIST: locally encoded transform feature histogram for rotation-invariant texture classification. IEEE Trans Circ Syst Video Technol 28(7):1565–1579

    Article  Google Scholar 

  61. Song Y, Zhang F, Li Q, Huang H, O’Donnell LJ, Cai W (2017) Locally-transferred Fisher vectors for texture classification. In: 2017 IEEE international conference on computer vision (ICCV). https://doi.org/10.1109/ICCV.2017.526, pp 4922–4930

  62. Stecher M, Rundell W (1977) Maximum principles for pseudoparabolic partial differential equations. J Math Anal Appl 57(1):110–118

    Article  MathSciNet  MATH  Google Scholar 

  63. Tao Z, Wei T, Li J (2021) Wavelet multi-level attention capsule network for texture classification. IEEE Sig Process Lett 28:1215–1219. https://doi.org/10.1109/LSP.2021.3088052

    Article  Google Scholar 

  64. Ting T (1969) Parabolic and pseudo-parabolic partial differential equations. J Math Soc Jpn 21(3):440–453

    MathSciNet  MATH  Google Scholar 

  65. Tu B, Kuang W, Zhao G, He D, Liao Z, Ma W (2019) Hyperspectral image classification by combining local binary pattern and joint sparse representation. Int J Remote Sens 40(24, SI):9484–9500

    Article  Google Scholar 

  66. van Duijn C, Peletier L, Pop I (2007) A new class of entropy solutions of the Buckley-Leverett equation. SIAM J Math Anal 39:507–536

    Article  MathSciNet  MATH  Google Scholar 

  67. Varma M, Zisserman A (2005) A statistical approach to texture classification from single images. Int J Comput Vis 62(1):61–81

    Article  Google Scholar 

  68. Varma M, Zisserman A (2009) A statistical approach to material classification using image patch exemplars. IEEE Trans Pattern Anal Mach Intell 31 (11):2032–2047

    Article  Google Scholar 

  69. Vieira J, Abreu E (2018) Numerical modeling of the two-phase flow in porous media with dynamic capillary pressure. PhD thesis, University of Campinas Campinas, SP, Brazil

  70. Wang S, Xiang N, Xia Y, You L, Zhang J (2021) Real-time surface manipulation with c1 continuity through simple and efficient physics-based deformations. Vis Comput 1–13

  71. Weickert J (1996) Anisotropic diffusion in image processing

  72. Weickert J (1997) A review of nonlinear diffusion filtering. In: Proceedings of the first international conference on scale-space theory in computer vision, SCALE-SPACE ’97. Springer-Verlag, Berlin, Heidelberg, pp 3–28

  73. Witkin AP (1983) Scale-space filtering. In: Proceedings of the eighth international joint conference on artificial intelligence, IJCAI’83, vol 2. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 1019–1022

  74. Xu X, Li Y, Wu QMJ (2021) A compact multi-pattern encoding descriptor for texture classification. Digit Sig Process 114. https://doi.org/10.1016/j.dsp.2021.103081

  75. Xu Y, Ji H, Fermüller C (2009) Viewpoint invariant texture description using fractal analysis. Int J Comput Vis 83(1):85–100

    Article  Google Scholar 

  76. Xue J, Zhang H, Dana K (2018) Deep texture manifold for ground terrain recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)

  77. You L, Yang X, Pan J, Lee TY, Bian S, Qian K, Habib Z, Sargano AB, Kazmi I, Zhang JJ (2020) Fast character modeling with sketch-based PDE surfaces. Multimed Tools Appl 79:23161–23187

    Article  Google Scholar 

  78. Yu Y, Acton S (2002) Speckle reducing anisotropic diffusion. IEEE Trans Image Process 11(11):1260–1270

    Article  MathSciNet  Google Scholar 

  79. Zhai W, Cao Y, Zhang J, Zha ZJ (2019) Deep multiple-attribute-perceived network for real-world texture recognition. In: Proceedings of the IEEE/CVF international conference on computer vision (ICCV)

  80. Zhang H, Xue J, Dana K (2017) Deep TEN: Texture encoding network. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). https://doi.org/10.1109/CVPR.2017.309, pp 2896–2905

Download references

Acknowledgements

J. B. Florindo gratefully acknowledges the financial support of São Paulo Research Foundation (FAPESP) (Grant #2016/16060-0) and from National Council for Scientific and Technological Development, Brazil (CNPq) (Grants #301480/2016-8 and #423292/2018-8). E. Abreu gratefully acknowledges the financial support of São Paulo Research Foundation (FAPESP) (Grant #2019/20991-8), from National Council for Scientific and Technological Development - Brazil (CNPq) (Grant #2 306385/2019-8) and PETROBRAS - Brazil (Grant #2015/00398-0). E. Abreu and J. B. Florindo also gratefully acknowledge the financial support of Red Iberoamericana de Investigadores en Matemáticas Aplicadas a Datos (MathData).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joao B. Florindo.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, J., Abreu, E. & Florindo, J.B. Texture image classification based on a pseudo-parabolic diffusion model. Multimed Tools Appl 82, 3581–3604 (2023). https://doi.org/10.1007/s11042-022-12048-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12048-2

Keywords