Skip to main content
Log in

Low-complexity two-step lossless depth coding using coarse Lossy coding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Texture and depth images are generally used for 3D viewing with advanced displays. Because sthe characteristics of a depth image are very different from those of a texture image, an efficient compression method is required to transmit a depth image in a limited bandwidth. In this paper, a low-complexity two-step lossless depth coding (LTLDC) method using coarse lossy coding is proposed. The proposed method downsamples an original image and then coarsely compresses the downsampled image in the first step. This compressed image is upsampled, and then its residual is generated by subtracting the upsampled image from the original image. In the second step, each coding block within the residual and original images is adaptively compressed with a fast mode decision method in a lossless way, and the proposed method determines the best block based on their coding performance. Experimental results show that the proposed LTLDC method achieves a bitrate reduction of 4.35% with encoding complexity reduction of 20.38%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bossen F (2013) “Common test conditions and software reference configurations,” Doc. JCTVC-L110.

  2. Budagavi M, Fuldseth A, Bjøntegaard G, Sze V, Sadafale M (2013) Core transform Design in the High Efficiency Video Coding (HEVC) standard. IEEE J Selected Topics Signal Process 7(6):1029–1041

    Article  Google Scholar 

  3. Chen F, Xing Q, Liu F (2020) Technology of Hiding and Protecting the secret image based on Two-Channel deep hiding network. IEEE Access 8:21966–21979

    Article  Google Scholar 

  4. Dai T, Cai J, Zhang Y, Xia S-T, Zhang L (2019) Second-order attention network for single image super-resolution. IEEE Conf Comput Vis Pattern Recognit:11065–11074

  5. Fehn C (2004) “Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV,” SPIE Stereoscopic Displays and Virtual Reality Systems XI

  6. Hertel DW, Chang E (2007) Image quality standards in automotive vision applications. IEEE Intell Vehicles Symp

  7. ISO/IEC 15444–2:2004—Information Technology—JPEG (2000) Image coding system: extensions. 2009

  8. K. Kazui, T. Kubota, K. Takeuchi, A.Nakagawa (2015) Proposal on new HEVC profile for hierarchical lossless coding. ISO/IEC JTC1/SC29/WG11, Doc. M35785

  9. Kim S-H, Kang J-W, Kuo C-CJ (2011) Improved H.264/AVC lossless intra coding with two-layered residual coding (TRC). IEEE Trans Circuits and Syst Video Technol 21(7):1005–1010

    Article  Google Scholar 

  10. Kim J, Lee JK, Lee KM (2016) Accurate image super-resolution using very deep convolutional networks. IEEE Conf. Comput. Vis. Pattern Recognit.:1646–1654

  11. Lee JY, Park HW (2020) HEVC-based three-layer texture and depth coding for lossless synthesis in 3D video coding. Multimed Tools Appl 79(29–30):20929–20945

    Article  Google Scholar 

  12. Lee JY, Lin J-L, Chen Y-W, Chang Y-L, Kovliga I, Fartukov A, Mishurosvskiy M, Wey H-C, Huang Y-W, Lei S (2015) Depth-based texture coding in AVC-compatible 3D video coding. IEEE Trans. Circuits and Systems for Video Technol 25(8):1347–1361

    Article  Google Scholar 

  13. J. Y. Lee, Y. Choi, W. Lim, G. Bang (2020) AHG11: Deep neural network for super-resolution. ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29, Doc. JVET-T0096

  14. Lim B, Son S, Kim H, Nah S, Lee KM (2017) Enhanced deep residual networks for single image super-resolution. IEEE Conf. Comput. Vis. Pattern Recognit.:136–144

  15. K. Müller, Vetro A. (2014) Common Test Conditions of 3DV Core Experiments. ISO/IEC and ITU-T, Doc. JCT3V-G1100

  16. Nguyen T, Helle P, Winken M, Bross B, Marpe D, Schwarz H, Wiegand T (2013) Transform coding techniques in HEVC. IEEE J Selected Topics Signal Process 7(6):978–989

    Article  Google Scholar 

  17. Niu B, Wen W, Ren W, Zhang X, Yang L, Wang S, Zhang K, Cao X, Shen H (2020) Single image super-resolution via a holistic attention network. Eur Conf Comp Vision:191–207

  18. Ortega A, Ranchandra K (1988) Rate-distortion methods for image and video compression. IEEE Signal Process Mag 15(6):23–50

    Article  Google Scholar 

  19. Pan Z, Shen H, Lu Y, Li S, Yu N (2013) A low-complexity screen compression scheme for interactive screen sharing. IEEE Trans Circ Syst Video Technol 23(6):949–960

    Article  Google Scholar 

  20. S. A. Parah, F. Ahad, J. A. Sheikh, G. M. Bhat (2017) Hiding Clinical Information in Medical Images: A New High Capacity and Reversible Data Hiding Technique. 66, 214–230

  21. Patel R, Lad K, Patel M, Desai M (2021) A hybrid DST-SBPNRM approach for compressed video steganography. Multimedia Syst 27(3):417–428

    Article  Google Scholar 

  22. Patel R, Lad K, Patel M (2021) Study and investigation of video steganography over uncompressed and compressed domain: a comprehensive review. Multimedia Syst. https://doi.org/10.1007/s00530-021-00763-z

  23. Saxena A, Fernandes FC (2013) DCT/DST-based transform coding for intra prediction in image/video coding. IEEE Trans Image Process 22(10):3974–3981

    Article  MathSciNet  Google Scholar 

  24. Sullivan GJ, Ohm J-R, Han W-J, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circ Syst Video Technol 22(12):1649–1668

    Article  Google Scholar 

  25. Sullivan GJ, Boyce JM, Chen Y, Ohm J-R, Segall CA, Vetro A (2013) Standardized extensions of high efficiency video coding (HEVC). IEEE J Selected Topics Signal Process 7(6):1001–1016

    Article  Google Scholar 

  26. T.87 : Information Technology – Lossless and Near-Lossless Compression of Continuous-Tone Still Images-Baseline, ISO-14495-1/ITU-T.87 (JPEG-LS), 2011.

  27. Y. H. Tan, C. Yeo, Z. Li (2013) Residual DPCM for lossless coding in HEVC,” IEEE International Conference on Acoustics, Speech and Signal Processing

  28. Wang L, Wang Y, Liang Z, Lin Z, Yang J, An W, Guo Y (2019) Learning parallax attention for stereo image super-resolution. IEEE Conf. Comput. Vis. Pattern Recognit:12250–12259

  29. Wang Z, Chen J, Hoi SCH (2021) Deep learning for image super-resolution: a survey. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2020.2982166

  30. O. Watanabe, H. Kobayashi, H. Kiya 2018 Lossless two-layer coding using histogram packing technique for HDR images. IEEE Int Symp Circ Syst

  31. Wiegand T, Sullivan GJ, Bjntegaard G, Luthra A (2013) Overview of the H.264/AVC video coding standard. IEEE Trans. Circ SystVideo Technol 13(7):560–576

    Article  Google Scholar 

  32. Wige E, Yammine G, Amon P, Hutter A, Kaup A (2013) Pixel-based averaging predictor for HEVC lossless coding. IEEE Int Conf Image Process

    Book  Google Scholar 

  33. Yang S, Li B, Song Y, Xu J, Lu Y (2018) A hardware-accelerated system for high resolution real-time screen sharing. IEEE Trans Circ Syst Video Technol 29(3):881–891

    Article  Google Scholar 

  34. Yang Y, Xiao X, Cai X, Zhang W (2020) A secure and privacy-preserving technique based on contrast-enhancement reversible data hiding and plaintext encryption for medical images. IEEE Signal Process Lett 27:256–260

    Article  Google Scholar 

  35. Yang K, Suzuki T, Yoshida T (2020) Two-layer lossless coding of HDR images specialized for radiance format. APSIPA Annual Summit and Conference

    Google Scholar 

  36. Yoshida T, Iwahashi M, Kiya H (2018) Two-layer lossless coding for high dynamic range images based on range compression and adaptive inverse tone-mapping. IEICE Trans Fundamentals 101(1):259–266

    Article  Google Scholar 

  37. Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y (2018) Residual dense network for image super-resolution. IEEE Conf. Comput. Vis. Pattern Recognit.:2472–2481

  38. Zhao H, Kong X, He J, Qiao Y, Dong C (2020) Efficient image super-resolution using pixel attention. Eur Conf Computer Vision:56–72

  39. Zhou M, Gao W, Jiang M, Yu H (2012) HEVC lossless coding and improvements. IEEE Trans. Circ Syst Video Technol 22(12):1839–1843

    Article  Google Scholar 

  40. Zuo Y, Wu Q, Fang Y, An P, Huang L, Chen Z (2020) Multi-scale frequency reconstruction for guided depth map super-resolution via deep residual network. IEEE Trans Circuits Syst Video Technol 30(2):297–306

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Institute of Information & communications Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (IITP-2021-0-02067) and the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (NRF-2020M3F6A1109603, NRF-2021R1C1C1006459, NRF-2021R1F1A1060816).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiho Choi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

It has not been published elsewhere and that it has not been submitted simultaneously for publication elsewhere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.Y., Van Le, T., Choi, Y. et al. Low-complexity two-step lossless depth coding using coarse Lossy coding. Multimed Tools Appl 81, 14065–14079 (2022). https://doi.org/10.1007/s11042-022-12145-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12145-2

Keywords

Navigation