Skip to main content
Log in

Optic disc detection based on fully convolutional neural network and structured matrix decomposition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Optic disc (OD) region provides a wealth of information for fundus images analysis. The accurate detection of OD contour is very important for the diagnosis and treatment of eye diseases. Considering that the OD region is generally a saliency area that distinguishes with the background in the fundus image, in this paper, we propose a unified OD detection approach by using the fully convolution neural network (FCNN) combined with the structured matrix decomposition (SMD) model, which can detect the OD region from original image directly excluding the localization step. First, the original fundus image is clustered into super pixels by Simple Linear Iterative Clustering (SLIC) algorithm, and its color, texture, and edge features are extracted to construct a feature matrix. Then, a hierarchical segmentation tree is established based on the spatial connectivity and feature similarity between super pixel patches. Finally, the SMD model and the high-level semantic prior knowledge provided by FCNN are used together to decompose the feature matrix into a sparse matrix representing the OD region and a low-rank matrix indicating the background. In this way, the OD region is derived from the sparse matrix obtained by decomposition. Our proposed method is evaluated on DRISHTI-GS dataset and IDRiD dataset and shows superior performance compared with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ahlawat S, Choudhary A, Nayyar A, Singh S, Yoon B (2020) Improved handwritten digit recognition using convolutional neural networks (CNN). Sensors (Basel, Switzerland) 20(12):3344

    Article  Google Scholar 

  2. Almazroa A, Burman R, Raahemifar K, Lakshminarayanan V (2015) Optic disc and optic cup segmentation methodologies for glaucoma image detection: a survey. J Ophthalmol 2015:180972–180928

    Google Scholar 

  3. Asiri N, Hussain M, Adel FA, Alzaidi N (2019) Deep learning based computer-aided diagnosis systems for diabetic retinopathy: a survey. Artif Intell Med 99:101701.1–101701.20

    Article  Google Scholar 

  4. Babu TR, Shenbagadevi S (2011) Automatic detection of glaucoma using fundus image. Eur J Sci Res 59:22–32

    Google Scholar 

  5. Beiji Z, Qing L, Kejuan Y et al (2019) Saliency-based segmentation of optic disc in retinal images[J]. Chin J Electron 28(1):71–75

    Article  Google Scholar 

  6. Besenczi R, Tóth J, Hajdu A (2016) A review on automatic analysis techniques for color fundus photographs. Comp Struct Biotechnol J 14:371–384

    Article  Google Scholar 

  7. Cheng J, Liu J, Xu Y, Yin F, Wong DW, Tan NM, Tao D, Cheng CY, Aung T, Wong TY (2013) Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans Med Imaging 32(6):1019–1032

    Article  Google Scholar 

  8. Di N, Xu P, Cheng W, Cheng J, Jiang L (2017) Automatic localization of optic disc based on deep learning in fundus images. In: The proceedings of 2017 IEEE 2nd international conference on signal and image processing (ICSIP), Singapore, 04-06 August, 2017, pp 208–212

    Google Scholar 

  9. Feichtinger HG, Strohmer T (1998) Gabor analysis and algorithms. Gabor analysis and algorithms

    Book  MATH  Google Scholar 

  10. Fu H, Cheng J, Xu Y, Wong DWK, Liu J, Cao X (2018) Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans Med Imaging 99:1–1605

    Google Scholar 

  11. Gadekallu TR et al (2020) A novel PCA–whale optimization-based deep neural network model for classification of tomato plant diseases using GPU. Journal of Real-Time Image Processing:1–14

  12. Gadekallu TR, Khare N, Bhattacharya S, Singh S, Srivastava G (2020) Deep neural networks to predict diabetic retinopathy. J Ambient Intell Humaniz Comput 13

  13. Gao Y, Yu X, Wu C et al (2019) Accurate and efficient segmentation of optic disc and optic cup in retinal images integrating multi-view information. IEEE Access (99):1

  14. Haleem MS, Han L, Hemert JV, Li B (2013) Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review. Comput Med Imaging Graph 37(7–8):581–596

    Article  Google Scholar 

  15. Haleem MS, Han L, Hemert JV et al (2018) A novel adaptive deformable model for automated optic disc and cup segmentation to aid Glaucoma diagnosis. J Med Syst 42(1):20

    Article  Google Scholar 

  16. Ji P, Liu X (2019) A fast and efficient 3D reflection symmetry detector based on neural networks. Multimed Tools Appl 78(24):35471–35492

    Article  Google Scholar 

  17. Juneja M, Singh S, Agarwal N, Bali S, Gupta S, Thakur N, Jindal P (2019) Automated detection of Glaucoma using deep learning convolution network (G-net). Multimed Tools Appl 79:15531–15553

    Article  Google Scholar 

  18. Jz A, Jmb B, Dm B (2017) Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput Med Imaging Graph 55:28–41

    Article  Google Scholar 

  19. Khare N, Devan P, Chowdhary C, Bhattacharya S, Singh G, Singh S, Yoon B (2020) SMO-DNN: spider monkey optimization and deep neural network hybrid classifier model for intrusion detection. Electronics 9(4):692

    Article  Google Scholar 

  20. Lalonde M, Beaulieu M, Gagnon L (2001) Fast and robust optic disc detection using pyramidal decomposition and Hausdorff-based template matching. IEEE Trans Med Imaging 20(11):1193–1200

    Article  Google Scholar 

  21. Lang C, Liu G, Yu J, Yan S (2012) Saliency detection by multitask sparsity pursuit. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society 21(3):1327–1338

    Article  MathSciNet  MATH  Google Scholar 

  22. Lee S, Brady M (1991) Optic disk boundary detection. 1991. In: Mowforth P (ed) BMVC91. Springer, London

    Google Scholar 

  23. Li HQ, Chutatape O (2003) Boundary detection of optic disk by a modified ASM method. Pattern Recogn 36(9):2093–2104

    Article  MATH  Google Scholar 

  24. Li T, Bo W, Hu C, Kang H, Fu H (2021) Applications of deep learning in fundus images: a review. Med Image Anal 69:101971

    Article  Google Scholar 

  25. Lim G, Cheng Y, Hsu W, Lee ML (2015) Integrated optic disc and cup segmentation with deep learning. In: Proceeding of the 2015 IEEE 27th international conference on tools with artificial intelligence (ICTAI), Vietri sul Mare, 2015, pp 162–169

    Google Scholar 

  26. Lin Z, Liu R, Su Z (2011) Linearized alternating direction method with adaptive penalty for low-rank representation. In: Advances in Neural Information Processing Systems, pp 612–620

    Google Scholar 

  27. Ling H, Wu J, Huang J, Chen J, Li P (2020) Attention-based convolutional neural network for deep face recognition. Multimed Tools Appl 79(5):5595–5616

    Article  Google Scholar 

  28. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Google Scholar 

  29. Mithun NC, Das S, Fattah SA (2014) Automated detection of optic disc and blood vessel in retinal image using morphological, edge detection and feature extraction technique. In: The proceedings of 16th Int'l Conf. Computer and information technology (ICCIT), Khulan, 8-20 March, pp 98–102

    Chapter  Google Scholar 

  30. Mittapalli PS, Kande GB (2016) Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma. Biomed Signal Process Control. 24:34–46

    Article  Google Scholar 

  31. Mohamed NA, Zulkifley MA, Zaki WMDW et al (2019) An automated glaucoma screening system using cup-to-disc ratio via simple linear iterative clustering superpixel approach. Biomed Signal Process Control 53:101454

    Article  Google Scholar 

  32. Niemeijer M, Michael D, Abràmoff Ginneken BV (2009) Fast detection of the optic disc and fovea in color fundus photographs. Med Image Anal 13(6):859–870

    Article  Google Scholar 

  33. Peng H, Li B, Ling H, Hu W, Xiong W, Maybank SJ (2017) Salient object detection via structured matrix decomposition. IEEE Trans Pattern Anal Mach Intell 39(4):818–832

    Article  Google Scholar 

  34. Perez CA, Schulz DA, Aravena CM et al (2013) A new method for online retinal optic-disc detection based on Cascade classifiers. In: The proceedings of the 2013 IEEE international conference on systems, Manchester, England, 13-16 October 2013, pp 4300–4304

    Google Scholar 

  35. Pormal P, Pachade S, Kamble R et al (2018) Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research. Data 3(3):25

    Article  Google Scholar 

  36. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention, PT III. Book series: lecture notes in computer science volume: 9351, pp 234–241 Published: 2015

    Google Scholar 

  37. Sevastopolsky A (2017) Optic disc and cup segmentation methods for Glaucoma detection with modification of U-net convolutional neural network. Pattern Recognition and Image Analysis 27(3):618–624

    Article  Google Scholar 

  38. Shen X, Ying W (2012) A unified approach to salient object detection via low rank matrix recovery. In: IEEE conference on computer vision & pattern recognition

    Google Scholar 

  39. Shen L, Margolies LR, Rothstein JH, Fluder E, Mcbride RB, Sieh W (2019) Deep learning to improve breast Cancer early detection on screening mammography. Scientific Reports

  40. Shi Y, Wei Z, Ling H, Wang Z, Zhu P, Shen J, Li P (2021) Adaptive and robust partition learning for person retrieval with policy gradient. IEEE Transactions on Multimedia 23:3264–3277

    Article  Google Scholar 

  41. Simoncelli EP, Freeman WT (1995) The steerable pyramid: a flexible architecture for multi-scale derivative computation. In: Proceedings of international conference on image processing. Washington DC, USA. IEEE, pp 444–447

    Google Scholar 

  42. Sivaswamy J, Krishnadas SR, Datt Joshi G, Jain M et al (2014) Drishti-GS: retinal image dataset for optic nerve head(ONH) segmentation. In: The proceedings of the 2014 IEEE 11th international symposium on biomedical imaging (ISBI), Beijing, China, 29 April- 02 May; 2014, pp 53–56

    Google Scholar 

  43. Tang YD, Li XM, Von Freyberg A et al Automatic Segmentation of the Papilla in a Fundus Image Based on the C-V Model and a Shape Restraint. In: The Proceedings of 18th International Conference on Pattern Recognition, HongKong, China, 20–24 August 2006, p 183 +

  44. Thakur N, Juneja M (2018) Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomed Signal Process Control 42:162–189

    Article  Google Scholar 

  45. Wang L, Liu H, Lu Y, Chen H, Zhang J, Pu J (2019) A coarse-to-fine deep learning framework for optic disc segmentation in fundus images. Biomed Signal Process Control 51:82–89

    Article  Google Scholar 

  46. Wang L, Qian X, Zhang Y, Shen J, Cao X (2020) Enhancing sketch-based image retrieval by CNN semantic re-ranking. IEEE Transactions on Cybernetics 50(7):3330–3342

    Article  Google Scholar 

  47. Welfer D, Scharcanski J, Marinho DA (2013) Morphologic two-stage approach for automated optic disk detection in color eye fundus images. Pattern Recognit Lett 34:476–485

    Article  Google Scholar 

  48. Wong DWK, Liu J, Lim JH et al (2008) Level-set based automatic cup-to-disc ratio determination using retinal fundus images in ARGALI. In: The proceedings of international 30th annual international conference of the IEEE-Engineering-in-Medicine-and-Biology-Society, Vancouver, Canada, 20-24 august 2008, p 2266 +

    Google Scholar 

  49. Yan J, Zhu M, Liu H, Liu Y (2010) Visual saliency detection via sparsity pursuit. IEEE Signal Process Lett 17(8):739–742

    Article  Google Scholar 

  50. Yin F, Liu J, Ong SH et al (2011) Model-based optic nerve head segmentation on retinal fundus images. In: The proceedings of 33rd annual international conference of the IEEE engineering in medicine and biology society (EMBS), Boston, MA, 30 August-03 September, pp 2626–2629

    Google Scholar 

  51. Yuki H, Wei KJE, Hong TJ et al (2018) Computer-aided diagnosis of Glaucoma using fundus images: a review. Comput Methods Prog Biomed 165:1–12

    Article  Google Scholar 

  52. Zhou H, Schaefer G, Liu T, Lin F (2010) Segmentation of optic disc in retinal images using an improved gradient vector flow algorithm. Multimed Tools Appl 49(3):447–462

    Article  Google Scholar 

  53. Zhu X, Rangayyan RM, Ells AL (2010) Detection of the optic nerve head in fundus images of the retina using the Hough transform for circles. J Digit Imaging 23(3):332–341

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grant nos. U20A20197, 61973063, Liaoning Key Research and Development Project 2020JH2/10100040, Natural Science Foundation of Liaoning Province 2021-KF-12-01 and the Foundation of National Key Laboratory OEIP-O-202005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yu, X. & Wu, C. Optic disc detection based on fully convolutional neural network and structured matrix decomposition. Multimed Tools Appl 81, 10797–10817 (2022). https://doi.org/10.1007/s11042-022-12235-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12235-1

Keywords

Navigation