Skip to main content
Log in

A local volumetric covariance descriptor for markerless Parkinsonian gait pattern quantification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Gait is one of the most important biomarkers for Parkinson’s disease (PD). Nonetheless, current clinical diagnosis to quantify locomotion patterns uses coarse approximations, from a set of reduced marker-based trajectories. This approximation, among others, results restrictive, invasive, alters natural gait gestures, and leaves out relevant PD patterns. This paper introduces a new computational approach to quantify, classify and explain Parkinson gait patterns using a markerless video strategy. The core of the work is a local volumetric covariance to codify motion patterns during locomotion. Such covariance codifies convolutional pre-trained features tracked along a set of dense trajectories which represent subject’s gait. Covariance pattern computation involves an integral strategy to remain efficient in terms of computational cost. The proposed method was evaluated on 176 gait video sequences of a total of 22 patients among control and diagnosed with PD. The proposed approach achieved a remarkable average accuracy of 96.59% (± 0.13) with a sensitivity of 98.86%, specificity of 94.31%, and precision of 94.56%. These results suggest that the proposed approach may support clinical PD diagnosis and analysis using ordinary videos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://github.com/oskkr123/VolumetricCov-descriptor

References

  1. Abdulhay E., Arunkumar N., Narasimhan K., Vellaiappan E., Venkatraman V. (2018) Gait and tremor investigation using machine learning techniques for the diagnosis of parkinson disease. Futur Gener Comput Syst 83:366–373

    Article  Google Scholar 

  2. Belić M., Bobić V., Badža M., Š,olaja N., Ðurić-Jovičić M., Kostić V.S. (2019) Artificial intelligence for assisting diagnostics and assessment of parkinson’s disease—a review. Clin Neurol Neurosurg 184:105442

    Article  Google Scholar 

  3. Bovonsunthonchai S., Vachalathiti R., Pisarnpong A., Khobhun F., Hiengkaew V. (2014) Spatiotemporal gait parameters for patients with parkinson’s disease compared with normal individuals. Physiother Res Int 19(3):158–165

    Article  Google Scholar 

  4. Breiman L. (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  5. Caramia C., Torricelli D., Schmid M., Muñoz-Gonzalez A., Gonzalez-Vargas J., Grandas F., Pons J. L. (2018) Imu-based classification of parkinson’s disease from gait: a sensitivity analysis on sensor location and feature selection. IEEE J Biomed Health Inform 22(6):1765–1774

    Article  Google Scholar 

  6. Ceseracciu E., Sawacha Z., Cobelli C. (2014) Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept. PloS one 9(3):e87640

    Article  Google Scholar 

  7. Cole M. H., Naughton G. A., Silburn P. A. (2017) Neuromuscular impairments are associated with impaired head and trunk stability during gait in parkinson fallers. Neurorehab Neural Re 31(1):34–47

    Article  Google Scholar 

  8. Deng J., Dong W., Socher R., Li L. J., Li K., Fei-Fei L. (2009) Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference on computer vision and pattern recognition, pp. 248–255. IEEE

  9. Dorsey E. R., Bloem B. R. (2018) The parkinson pandemic—a call to action. JAMA neurology 75(1):9–10

    Article  Google Scholar 

  10. Duncan R. P., Leddy A. L., Cavanaugh J. T., Dibble L. E., Ellis T. D., Ford M. P., Foreman K. B., Earhart G. M. (2015) Balance differences in people with parkinson disease with and without freezing of gait. Gait & posture 42 (3):306–309

    Article  Google Scholar 

  11. Farnebäck G. (2003) Two-frame motion estimation based on polynomial expansion. In: Scandinavian conference on image analysis, pp. 363–370. Springer

  12. Guayacán L.C., Martínez F. (2021) Visualising and quantifying relevant parkinsonian gait patterns using 3d convolutional network, vol 123

  13. Halliday S. E., Winter D. A., Frank J. S., Patla A. E., Prince F. (1998) The initiation of gait in young, elderly, and parkinson’s disease subjects. Gait & posture 8(1):8–14

    Article  Google Scholar 

  14. Huang G., Liu Z., Van Der Maaten L., Weinberger K. Q. (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708

  15. Hussein M. E., Torki M., Gowayyed M. A., El-Saban M. (2013) Human action recognition using a temporal hierarchy of covariance descriptors on 3d joint locations. In: Twenty-third international joint conference on artificial intelligence

  16. Larrazabal A. J., Cena C. G., Martínez C.E. (2019) Video-oculography eye tracking towards clinical applications: A review. Comput Biol Med 108:57–66

    Article  Google Scholar 

  17. Latt M. D., Menz H. B., Fung V. S., Lord S. R. (2009) Acceleration patterns of the head and pelvis during gait in older people with parkinson’s disease: a comparison of fallers and nonfallers. J Gerontol A Biol Sci Med Sci 64(6):700–706

    Article  Google Scholar 

  18. Lucas B. D., Kanade T., et al. (1981) an iterative image registration technique with an application to stereo vision

  19. Ma B., Su Y., Jurie F. (2014) Covariance descriptor based on bio-inspired features for person re-identification and face verification. Image Vis Comput 32 (6-7):379–390

    Article  Google Scholar 

  20. Matikainen P., Hebert M., Sukthankar R. (2009) Trajectons: Action recognition through the motion analysis of tracked features. In: 2009 IEEE 12Th international conference on computer vision workshops, ICCV workshops, pp. 514–521. IEEE

  21. Messing R., Pal C., Kautz H. (2009) Activity recognition using the velocity histories of tracked keypoints. In: 2009 IEEE 12Th international conference on computer vision, pp. 104–111. IEEE

  22. Minh H. Q., Murino V. (2017) Covariances in computer vision and machine learning morgan & claypool publishers

  23. Minh H. Q., Murino V. (2017) Covariances in computer vision and machine learning. Synthesis Lectures on Computer Vision 7(4):1–170

    Article  Google Scholar 

  24. Naghavi N., Wade E. (2019) Prediction of freezing of gait in parkinson’s disease using statistical inference and lower–limb acceleration data. IEEE Trans Neural Syst Rehabilitation Eng 27(5):947–955

    Article  Google Scholar 

  25. Pistacchi M., Gioulis M., Sanson F., De Giovannini E., Filippi G., Rossetto F., Marsala S. Z. (2017) Gait analysis and clinical correlations in early parkinson’s disease. Funct Neurol 32(1):28

    Article  Google Scholar 

  26. Poewe W., Seppi K., Tanner C. M., Halliday G. M., Brundin P., Volkmann J., Schrag A. E., Lang A. E. (2017) Parkinson disease. Nat Rev Dis Primers 3(1):1–21

    Article  Google Scholar 

  27. Rizzo G., Copetti M., Arcuti S., Martino D., Fontana A., Logroscino G. (2016) Accuracy of clinical diagnosis of parkinson disease: a systematic review and meta-analysis. Neurology 86(6):566–576

    Article  Google Scholar 

  28. Sandler M., Howard A., Zhu M., Zhmoginov A., Chen L. C. (2018) Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4510–4520

  29. Sun J., Wu X., Yan S., Cheong L. F., Chua T. S., Li J. (2009) Hierarchical spatio-temporal context modeling for action recognition. In: 2009 IEEE Conference on computer vision and pattern recognition, pp. 2004–2011. IEEE

  30. Sutherland D. H. (2002) The evolution of clinical gait analysis: Part ii kinematics. Gait & posture 16(2):159–179

    Article  Google Scholar 

  31. Thenganatt M. A., Jankovic J. (2014) Psychogenic tremor: a video guide to its distinguishing features. Tremor Other Hyperkinet Mov:4

  32. Tuzel O., Porikli F., Meer P. (2006) Region covariance: a fast descriptor for detection and classification. In: European conference on computer vision, pp. 589–600. Springer

  33. Ullah A., Ahmad J., Muhammad K., Sajjad M., Baik S. W. (2017) Action recognition in video sequences using deep bi-directional lstm with cnn features. IEEE Access 6:1155–1166

    Article  Google Scholar 

  34. Varol G., Laptev I., Schmid C. (2017) Long-term temporal convolutions for action recognition. IEEE Trans Pattern Anal Mach Intell 40(6):1510–1517

    Article  Google Scholar 

  35. Verlekar T. T., Soares L. D., Correia P. L. (2018) Automatic classification of gait impairments using a markerless 2d video-based system. Sensors 18 (9):2743

    Article  Google Scholar 

  36. Verlekar T. T., Soares L. D., Correia P. L. (2018) Automatic classification of gait impairments using a markerless 2d video-based system Sensors

  37. Vos T., et al. (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the global burden of disease study 2016. The Lancet 390:1211–1259

    Article  Google Scholar 

  38. Wang H., Kläser A., Schmid C., Liu C. L. (2013) Dense trajectories and motion boundary descriptors for action recognition. Int J Comput Vis 103(1):60–79

    Article  MathSciNet  Google Scholar 

  39. Wang H., Schmid C. (2013) Action recognition with improved trajectories. In: Proceedings of the IEEE international conference on computer vision, pp. 3551–3558

Download references

Acknowledgements

The authors thank the FAMPAS Foundation (Fundación del Adulto Mayor y Parkinson Santander) and the nursing home Asilo San Rafael. Additionally, gratefulacknowledgments to the Vicerrectoría de Investigación y Extensión of the Universidad Industrial de Santander for supporting this research registered by theproject: Cuantificación de patrones locomotores para el diagnóstico y seguimiento remoto en zonas de dificil acceso, with SIVIE code 2697.

Funding

This work was partially funded by the Vicerrectoría de Investigación y Extensión of Universidad Industrial de Santander with the project: Cuantificación de patrones locomotores para el diagnóstico y seguimiento remoto en zonas de dificil acceso, with SIVIE code 2697.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Martínez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza, O., Martínez, F. & Olmos, J. A local volumetric covariance descriptor for markerless Parkinsonian gait pattern quantification. Multimed Tools Appl 81, 30733–30748 (2022). https://doi.org/10.1007/s11042-022-12280-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12280-w

Keywords

Navigation