Skip to main content
Log in

Efficient detection of copy-move forgery using polar complex exponential transform and gradient direction pattern

  • 1225: Sentient Multimedia Systems and Universal Visual Languages
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Evidence plays a vital role in image forensics. If evidence is an image, then its authenticity verification is the key to image forensics. One of the common forgeries in digital images is Copy-Move Forgery, which happens in a single image in which some portation of the image is copied and pasted in the same image. Copy Move Forgery Detection has demand in legal evidence, forensic examination and many more areas. The proposed method starts with the conversion of a grey image into overlapping blocks. Rotationally invariant stable Polar Complex Exponential Transform features are obtained from each overlapping block. The extracted feature dimensionality is further reduced using the Gradient Direction Pattern histogram. The similarity is identified among these histogram feature matrix rows. False matches are eliminated with the help of the windowing technique and morphological operators. The performance of the proposed method is calculated in terms of recall rate, precision, and F1score. The testing results are outstanding, even when the suspected image has been subjected to post-processing assaults; the recall rate is the highest in the literature, and the remaining performance metrics are likewise excellent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Agarwal R, Verma OP (2019) An efficient copy move forgery detection using deep learning feature extraction and matching algorithm. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-019-08495-z

  2. Agarwal R, Verma OP (2021) Robust copy-move forgery detection using modified superpixel based FCM clustering with emperor penguin optimization and block feature matching. Evol Syst:1–15. https://doi.org/10.1007/s12530-021-09367-4

  3. Al_azrak FM, Elsharkawy ZF, Elkorany AS, el Banby GM, Dessowky MI, El-Samie FEA (2020) Copy-move forgery detection based on discrete and SURF transforms. Wirel Pers Commun 110(1):503–530. https://doi.org/10.1007/s11277-019-06739-7

  4. Al-hammadi MM, Emmanuel S (2016) Improving SURF based copy-move forgery detection using super resolution. https://doi.org/10.1109/ISM.2016.91

  5. Amerini I, Ballan L, Caldelli R, del Bimbo A, Serra G (2011) A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans Inform Forensics Sec 6(32):1099–1110. https://doi.org/10.1109/TIFS.2011.2129512

    Article  Google Scholar 

  6. Babu SBGT, Rao CS (2021) An optimized technique for copy–move forgery localization using statistical features. ICT Express. https://doi.org/10.1016/j.icte.2021.08.016.

  7. Babu SBGT, Rao CS (2016) Texture and steerability based image authentication. 2016 11th Int Conf Industrial Inform Syst (ICIIS) 2018-Janua:154–159. https://doi.org/10.1109/ICIINFS.2016.8262925

    Article  Google Scholar 

  8. Chen B, Yu M, Su Q, Shim HJAE, Shi Y (2018) Fractional Quaternion Zernike Moments for Robust Color Image Copy-Move Forgery Detection. IEEE Access, vol. PP, no. c, p 1. https://doi.org/10.1109/ACCESS.2018.2871952

  9. Emam M, Han Q, Niu X (2016) PCET based copy-move forgery detection in images under geometric transforms. Multimed Tools Appl 75(18):11513–11527. https://doi.org/10.1007/s11042-015-2872-2

    Article  Google Scholar 

  10. Fridrich J, Soukal D, Lukáš J (2003) Detection of copy-move forgery in digital images. https://doi.org/10.1109/PACIIA.2008.240

  11. Gani G, Qadir F (2020) A robust copy-move forgery detection technique based on discrete cosine transform and cellular automata. J Inform Sec Appl 54:102510. https://doi.org/10.1016/j.jisa.2020.102510

    Article  Google Scholar 

  12. Goel N, Kaur S, Bala R (2020) Dual branch convolutional neural network for copy move forgery detection. https://doi.org/10.1049/ipr2.12051

  13. Gong J, Guo J (2015) Exposing region duplication through local geometrical color invariant features. J Electron Imaging 24(3):033010. https://doi.org/10.1117/1.jei.24.3.033010

    Article  Google Scholar 

  14. Hosny KM, Shouman MA, Abdel Salam HM (2009) Fast computation of orthogonal Fourier–Mellin moments in polar coordinates. J Real-Time Image Process 6(2):73–80. https://doi.org/10.1007/S11554-009-0135-Z

    Article  Google Scholar 

  15. Huang DY, Huang CN, Hu WC, Chou CH (2017) Robustness of copy-move forgery detection under high JPEG compression artifacts. Multimed Tools Appl 76(1):1509–1530. https://doi.org/10.1007/s11042-015-3152-x

    Article  Google Scholar 

  16. Huang H-Y, Ciou A-J (2019) Copy-move forgery detection for image forensics using the superpixel segmentation and the Helmert transformation. EURASIP J Image Video Process 2019(1):1–16. https://doi.org/10.1186/S13640-019-0469-9

    Article  Google Scholar 

  17. Huynh K-T, Ly T-N, Nguyen P-T (2021) Improving the Accuracy in Copy-Move Image Detection: A Model of Sharpness and Blurriness. SN Comp Sci 2(4):278. https://doi.org/10.1007/s42979-021-00682-w

    Article  Google Scholar 

  18. Islam MS (2013) Gender classification using gradient direction pattern 25(4):797–799

    Google Scholar 

  19. Jung K (2016) A survey of reversible data hiding methods in dual images. IETE Tech Rev 33(4):441–452. https://doi.org/10.1080/02564602.2015.1102099

    Article  Google Scholar 

  20. Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inform Forensics Sec 10(3):507–518. https://doi.org/10.1109/TIFS.2014.2381872

    Article  Google Scholar 

  21. Li L, Li S, Zhu H, Chu S-C, Roddick JF, Pan J-S (2013) An efficient scheme for detecting copy-move ForgedImages by local binary patterns.

  22. Lin C, Lu W, Huang X, Liu K, Sun W, Lin H, Tan Z (2019) Copy-move forgery detection using combined features and transitive matching. Multimed Tools Appl 78(21):30081–30096. https://doi.org/10.1007/s11042-018-6922-4

    Article  Google Scholar 

  23. Pan X, Lyu S (2010) Region duplication detection using image feature matching. IEEE Trans Inform Forensics Sec 5(4):857–867. https://doi.org/10.1109/TIFS.2010.2078506

    Article  Google Scholar 

  24. Ryu SJ, Kirchner M, Lee MJ, Lee HK (2013) Rotation invariant localization of duplicated image regions based on zernike moments. IEEE Trans Inform Forensics Sec 8(8):1355–1370. https://doi.org/10.1109/TIFS.2013.2272377

    Article  Google Scholar 

  25. Salleh R, Othman F, Wahab AWA, Abd Warif NB, Idris MYI (2017) SIFT-Symmetry: A robust detection method for copy-move forgery with reflection attack. J Vis Commun Image Represent 46:219–232. https://doi.org/10.1016/j.jvcir.2017.04.004

    Article  Google Scholar 

  26. Srinivasa Rao C, Tilak Babu SBG (2016) Image Authentication Using Local Binary Pattern on the Low Frequency Components,” in Lecture Notes in Electrical Engineering, vol. 372, Springer Verlag, pp. 529–537. https://doi.org/10.1007/978-81-322-2728-1_49

  27. Thakur R, Rohilla R (2020) Recent advances in digital image manipulation detection techniques: A brief review. Forensic Sci Int 312:110311. https://doi.org/10.1016/j.forsciint.2020.110311

    Article  Google Scholar 

  28. “ToolboxDESC - File Exchange - MATLAB Central.” https://in.mathworks.com/matlabcentral/fileexchange/68427-toolboxdesc?s_tid=FX_rc1_behav. Accessed 29 Jul 2021

  29. Turan C, Lam KM (2018) Histogram-based local descriptors for facial expression recognition (FER): a comprehensive study. J Vis Commun Image Represent 55:331–341. https://doi.org/10.1016/j.jvcir.2018.05.024

    Article  Google Scholar 

  30. Wang Y, Kang X, Chen Y (2020) Robust and accurate detection of image copy-move forgery using PCET-SVD and histogram of block similarity measures. J Inform Sec Appl 54:102536. https://doi.org/10.1016/j.jisa.2020.102536

    Article  Google Scholar 

  31. Xu H, Liu Y, Wang P, Yang H, Wang X (2016) Robust copy–move forgery detection using quaternion exponent moments. Pattern Anal Applic 21(2):451–467. https://doi.org/10.1007/s10044-016-0588-1

    Article  MathSciNet  Google Scholar 

  32. Yang F, Li J, Lu W, Weng J (2017) Copy-move forgery detection based on hybrid features. Eng Appl Artif Intell 59(October 2016):73–83. https://doi.org/10.1016/j.engappai.2016.12.022

    Article  Google Scholar 

  33. Yang X, Wang C, Wang L, Wang H, Yang Y, Niu PP (2021) Robust and effective multiple copy-move forgeries detection and localization. Pattern Anal Appl (0123456789). https://doi.org/10.1007/s10044-021-00968-y

  34. Zhao J, Guo J (2013) Passive forensics for copy-move image forgery using a method based on DCT and SVD. Forensic Sci Int 233(1–3):158–166. https://doi.org/10.1016/j.forsciint.2013.09.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. G. Tilak Babu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, S.B.G.T., Rao, C.S. Efficient detection of copy-move forgery using polar complex exponential transform and gradient direction pattern. Multimed Tools Appl 82, 10061–10075 (2023). https://doi.org/10.1007/s11042-022-12311-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12311-6

Keywords