Skip to main content
Log in

Fuzzy clustering using gravitational search algorithm for brain image segmentation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Clustering is a key activity in numerous data mining applications such as information retrieval, text mining, image segmentation. Clustering also plays a major role in medical image processing. Manual image segmentation is very tedious and time consuming task and the results of manual segmentation are subjected to errors due to huge and varying data. Therefore, automated segmentation systems are gaining enormous importance nowadays. This paper presents an automated system for segmentation of brain tissues namely white matter, gray matter and cerebrospinal fluid from brain MRI images. In this work, we propose a novel clustering approach, Fuzzy-Gravitational Search Algorithm(GSA) for MRI brain image segmentation. The proposed approach is based on GSA, and uses fuzzy inference rules for controlling the parameter α as search progresses. The results of the system are compared with GSA and recent work on brain image segmentation algorithms for both real and simulated database on the basis of Dice Coefficient values. The performance of the Fuzzy-GSA algorithm is also evaluated against four benchmark datasets from the UC Irvine repository. The results illustrate that the Fuzzy-GSA approach attains the highest quality clustering over the selected datasets when compared with several other clustering algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Al-Sultan KS (1995) A tabu search approach to the clustering problem. Pattern Recogn 28(9):1443–1451

    Article  Google Scholar 

  2. Benaichouche AN, Oulhadj H, Siarry P (2013) Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction. Digit Signal Process 23(5):1390-1400, ISSN 1051-2004. https://doi.org/10.1016/j.dsp.2013.07.005

  3. Blake CL, Merz CJ UCI repository of machine learning databases. Available from: http://www.ics.uci.edu/-mlearn/MLRepository.html

  4. Chen Y, Zhang J, Wang S, Zheng Y (2012) Brain magnetic resonance image segmentation based on an adapted non-local fuzzy c-means method. IET Comput Vis 6(6):610-625. https://doi.org/10.1049/iet-cvi.2011.0263

  5. Chen Y, Li J, Zhang H, Zheng Y, Jeon B, Wu QJ (2016) Non-local-based spatially constrained hierarchical fuzzy C-means method for brain magnetic resonance imaging segmentation. IET Image Process 10(11):865-876, 11. https://doi.org/10.1049/iet-ipr.2016.0271

  6. Ching-Yi C, Fun Y (2004) Particle swarm optimization algorithm and its application to clustering analysis. In: IEEE International Conference on Networking, Sensing and Control

  7. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  8. Fathian M, Amiri B, Maroosi A (2007) Application of honey-bee mating optimization algorithm on clustering. Appl Math Comput 190(2):1502–1513

  9. Forgy EW (1965) Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21(1965):768–769

  10. Hanuman V, Agrawal RK, Sharan A (2016) An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation. Appl Soft Comput 46:543-557, ISSN 1568-4946. https://doi.org/10.1016/j.asoc.2015.12.022

  11. Hatamlou A, Abdullah S, Nezamabadi-pour H (2011) Application of gravitational search algorithm on data clustering. Rough Sets and Knowledge Technology, pp 337–346

  12. Hatamlou A, Abdullah S, Nezamabadi-pour H (2012) A combined approach for clustering based on K-means and gravitational search algorithms. Swarm Evol Comput 6:47–52S

  13. http://www.insight-journal.org/midas/community/

  14. Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recognit Lett 31(8):651–666

    Article  Google Scholar 

  15. Jardine N, van Rijsbergen CJ (1971) The use of hierarchic clustering in information retrieval. Inf Storage Retr 7(5):217–240

    Article  Google Scholar 

  16. Kalaiselvi T, Nagaraja P, Karthick Ganapathy V (2016) Improved Fuzzy C-means for brain tissue segmentation using T1- weighted MRI head scans. International Journal of Innovative Science, Engineering & Technology 3(Online):2348–7968

  17. Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York

    Book  Google Scholar 

  18. Kerr G, Ruskin HJ, Crane M, Doolan P (2008) Techniques for clustering gene expression data. Comput Biol Med 38(3):283–293

  19. Liao L, Lin T, Li B (2008) MRI brain image segmentation and bias field correction based on fast spatially constrained kernel clustering approach. Pattern Recognit Lett 29(10):1580–1588

    Article  Google Scholar 

  20. MacQueen (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol 1, pp 281-297

  21. Mahmood Q, Chodorowski A, Persson M (2015) Automated MRI brain tissue segmentation based on mean shift and fuzzy c-means using a priori tissue probability maps. IRBM 36(3):185-196, ISSN 1959-0318. https://doi.org/10.1016/j.irbm.2015.01.007

  22. Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based clustering technique. Pattern Recogn 33(9):1455–1465

    Article  Google Scholar 

  23. Moeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders MJNL, Išgum I (2016) Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 35(5):1252–1261. https://doi.org/10.1109/TMI.2016.2548501

  24. Nakib A, Oulhadj H (2009) A thresholding method based on two-dimensional fractional differentiation. Image Vis Comput 27:1343–1357

    Article  Google Scholar 

  25. Namburu A, Samayamantula SK, Edara SR. Generalised rough intuitionistic fuzzy c-means for magnetic resonance brain image segmentation. IET Image Process 11(9):777–785

  26. Noback CR, Strominger NL, Demarest RJ, Ruggiero DA (2005) The human nervous system: structure and function, 6th edn. Humana Press, Totowa

    Google Scholar 

  27. Om PV, Heena H. A novel intuitionistic Fuzzy co-clustering algorithm for brain images. Multimed Tools Appl. https://doi.org/10.1007/s11042-020-09320-8

  28. Ortiz A, Górriz JM, Ramírez J, Salas-Gonzalez D (2011) MR brain image segmentation by growing hierarchical SOM and probability clustering. Electron Lett 47(10):585-586. https://doi.org/10.1049/el.2011.0322

  29. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

  30. Saglam B, Türkay M, Salman FS, Sayın S, Karaesmen F, Örmeci EL (2006) A mixed-integer programming approach to the clustering problem with an application in customer segmentation. Eur J Oper Res 173(3):866–879

    Article  MathSciNet  Google Scholar 

  31. Saneipour K, Mohammadpoor M (2019) Improvement of MRI brain image segmentation using Fuzzy unsupervised learning. Iran J Radiol. In Press. https://doi.org/10.5812/iranjradiol.69063,

  32. Selim SZ, Alsultan K (1991) A simulated annealing algorithm for the clustering problem. Pattern Recognit 24(10):1003–1008

  33. Shelokar PS, Jayaraman VK, Kulkarni BD (2004) An ant colony approach for clustering. Anal Chim Acta 509(2):187–195

    Article  Google Scholar 

  34. Sudipta Roy SK, Bandyopadhyay (2016) A new method of brain tissues segmentation from MRI with accuracy estimation. Procedia Comput Sci 85:362-369, ISSN 1877-0509. https://doi.org/10.1016/j.procs.2016.05.244

  35. Sung CS, Jin HW (2000) A tabu-search-based heuristic for clustering. Pattern Recogn 33(5):849–858

    Article  Google Scholar 

  36. Tombros A, Villa R, van Rijsbergen CJ (2002) The effectiveness of query-specific hierarchic clustering in information retrieval. Inf Process Manag 38(4):559–582

    Article  Google Scholar 

  37. Wahba M (2008) An Automated Modified Region Growing Technique for Prostate Segmentation in Trans-Rectal Ultrasound Images, Master’s Thesis, Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada

  38. Xia Y, Fenga D, Wangd T, Zhaob R, Zhangb Y (2007) Image segmentation by clustering of spatial patterns. Pattern Recognit Lett 28(12):1548–1555

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heena Hooda.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hooda, H., Verma, O.P. Fuzzy clustering using gravitational search algorithm for brain image segmentation. Multimed Tools Appl 81, 29633–29652 (2022). https://doi.org/10.1007/s11042-022-12336-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12336-x

Keywords

Navigation