Skip to main content
Log in

A bio-inspired contour detection model using multiple cues inhibition in primary visual cortex

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The human visual system has efficient architecture for information reception and integration for effectively performing visual tasks like detecting contours. Physiological evidence has shown that most neuronal responses in the classical receptive field (CRF) of the primary visual cortex are modulated, generally suppressed by the non-CRF surround. These center-surround interactions are thought to inhibit or facilitate responses to edges according to other similar edges in the surroundings, which is useful for suppressing textures and enhancing contours. A biologically motivated model with subfield-based inhibition is proposed in this paper to improve the performance of perceptually salient contour detection relative to the existing single-neuron based inhibition model. A novel subfield based inhibition framework is presented, where the inhibition terms are combined with center-surround and surround-surround differences using multiple cues, including orientation based energy distribution and directional saliency within regions. Extensive experimental evaluation demonstrates that the proposed method outperforms most of competing methods, especially biological motivated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Albright TD, Stoner GR (2002) Contextual influences on visual processing. Annu Rev Neurosci 25(1):339–379

    Google Scholar 

  2. Angelucci A, Bressloff PC (2006) Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Prog Brain Res 154:93–120

    Google Scholar 

  3. Arbelaez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33(5):898–916. https://doi.org/10.1109/TPAMI.2010.161

    Article  Google Scholar 

  4. Arbeláez P, Pont-Tuset J, Barron JT, Marques F, Malik J (2014) Multiscale combinatorial grouping. IEEE Conference on Computer Vision and Pattern Recognition:328–335

  5. Azzopardi G, Petkov N (2012) A CORF computational model of a simple cell that relies on LGN input outperforms the Gabor function model. Biol Cybern 106:1–13

    Google Scholar 

  6. Bar M (2004) Visual objects in context. Nat Rev Neurosci 5(8):617–629

    Google Scholar 

  7. Bertasius G, Shi J, Torresani L (2015) Deepedge: a multi-scale bifurcated deep network for top-down contour detection. In: IEEE conference on computer vision and pattern recognition, pp 4380–4389

    Google Scholar 

  8. Boukerroui D, Noble JA, Brady M (2004) On the choice of band-pass quadrature filters. Journal of Mathematical Imaging and Vision 21(1–2):53–80

    MathSciNet  MATH  Google Scholar 

  9. Bredfeldt CE, Ringach D (2002) Dynamics of spatial frequency tuning in macaque V1. J Neurosci 22(5):1976–1984

    Google Scholar 

  10. Canny J (1986) A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 6:679–698. https://doi.org/10.1109/TPAMI.1986.4767851

    Article  Google Scholar 

  11. Cao YJ, Lin C, Pan YJ, Zhao HJ (2019) Application of the center–surround mechanism to contour detection. Multimed Tools Appl 78(17):1–21

    Google Scholar 

  12. Cavanaugh JR, Bair W, Movshon JA (2002) Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. J Neurophysiol 88(5):2547–2556

    Google Scholar 

  13. Chao-Yi L, Wu L (1994) Extensive integration field beyond the classical receptive field of cat's striate cortical neurons—classification and tuning properties. Vis Res 34(18):2337–2355

    Google Scholar 

  14. Coen-Cagli R, Dayan P, Schwartz O (2012) Cortical surround interactions and perceptual salience via natural scene statistics. PLoS Comput Biol 8(3):e1002405

    Google Scholar 

  15. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Google Scholar 

  16. Cour T, Benezit F, Shi J (2005) Spectral segmentation with multiscale graph decomposition. Computer vision and pattern recognition, 2005. In: IEEE computer society conference on, vol 2. CVPR, pp 1124–1131

    Google Scholar 

  17. Croner LJ, Kaplan E (1995) Receptive fields of P and M ganglion cells across the primate retina. Vis Res 35(1):7–24

    Google Scholar 

  18. Das A, Gilbert CD (1999) Topography of contextual modulations mediated by short-range interactions in primary visual cortex. Nature 399(6737):655–661

    Google Scholar 

  19. Daugman JG (1985) Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. JOSA A 2(7):1160–1169

    Google Scholar 

  20. Dollar P, Tu Z, Belongie S (2006) Supervised learning of edges and object boundaries. CVPR 2:1964–1971

    Google Scholar 

  21. Duda RO, Hart PE (1973) Pattern classification and scene analysis. Wiley, New York

    MATH  Google Scholar 

  22. Gao S, Yang K, Li C, Li Y (2013) A color constancy model with double-opponency mechanisms. ICCV:929–936

  23. Girshick R (2015) Fast r-cnn. In: International Comference on computer vision, pp 1440–1448

    Google Scholar 

  24. Grigorescu C, Petkov N, Westenberg MA (2003) Contour detection based on nonclassical receptive field inhibition. IEEE Transactions on Image Processing 12(7):729–739. https://doi.org/10.1109/TIP.2003.814250

    Article  Google Scholar 

  25. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol 160(1):106–154

    Google Scholar 

  26. Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195(1):215–243

    Google Scholar 

  27. Hummel RA, Zucker SW (1983) On the foundations of relaxation labeling processes. IEEE Trans Pattern Anal Mach Intell 3:267–287

    MATH  Google Scholar 

  28. Itti L, Koch C (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vis Res 40(10):1489–1506

    Google Scholar 

  29. Jones JP, Palmer LA (1987) An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol 58(6):1233–1258

    Google Scholar 

  30. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    MATH  Google Scholar 

  31. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Aystems:1097–1105

  32. Landy MS, Graham N (2004) 73 visual perception of texture. The Visual Neurosciences 1106

  33. Li C-Y (1996) Integration fields beyond the classical receptive field: organization and functional properties. Physiology 11(4):181–186

    Google Scholar 

  34. Li C-Y, Lei J-J, Yao H-S (1999) Shift in speed selectivity of visual cortical neurons: a neural basis of perceived motion contrast. Proc Natl Acad Sci 96(7):4052–4056

    Google Scholar 

  35. Lin C, Xu G, Cao Y, Liang C, Li Y (2016) Improved contour detection model with spatial summation properties based on nonclassical receptive field. Journal of Electronic Imaging 25(4):043018–043018

    Google Scholar 

  36. Maninis K-K, Pont-Tuset J, Arbeláez P, Van Gool L (2017) Convolutional oriented boundaries: from image segmentation to high-level tasks. arXiv preprint arXiv:1701.04658 40 (4): 819-833. https://doi.org/10.1109/TPAMI.2017.2700300

  37. Marr D, Hildreth E (1980) Theory of edge detection. Proc R Soc Lond B Biol Sci 207(1167):187–217

    Google Scholar 

  38. Martin D, Fowlkes C, Tal D, and Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE international conference on, vol. 2, pp. 416–423.

  39. Martin DR, Fowlkes CC, Malik J (2004) Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans Pattern Anal Mach Intell 26(5):530–549. https://doi.org/10.1109/TPAMI.2004.1273918

    Article  Google Scholar 

  40. Papari G, Petkov N (2011) Edge and line oriented contour detection: state of the art. Image Vis Comput 29(2):79–103

    Google Scholar 

  41. Papari G, Petkov N (2011) An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection. Pattern Recogn 44(9):1999–2007

    Google Scholar 

  42. Pont-Tuset J, Marques F (2016) Supervised evaluation of image segmentation and object proposal techniques. IEEE Trans Pattern Anal Mach Intell 38(7):1465–1478

    Google Scholar 

  43. Prewitt JM (1970) Object enhancement and extraction. Picture Processing and Psychopictorics 10(1):15–19

    Google Scholar 

  44. Series P, Lorenceau J, Frégnac Y (2003) The “silent” surround of V1 receptive fields: theory and experiments. Journal of Physiology-Paris 97(4):453–474

    Google Scholar 

  45. Shen ZM, Xu WF, Li CY (2007) Cue-invariant detection of Centre–surround discontinuity by V1 neurons in awake macaque monkey. J Physiol 583(2):581–592

    Google Scholar 

  46. Shen W, Wang X, Wang Y, Bai X, Zhang Z (2015) Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: IEEE conference on computer vision and pattern recognition, pp 3982–3991

    Google Scholar 

  47. Spratling MW (2013) Image segmentation using a sparse coding model of cortical area V1. IEEE Trans Image Process 22(4):1631–1643

    MathSciNet  MATH  Google Scholar 

  48. Tang Q, Sang N, Zhang T (2007) Extraction of salient contours from cluttered scenes. Pattern Recogn 40(11):3100–3109

    MATH  Google Scholar 

  49. Tang Q, Sang N, Liu H (2016) Contrast-dependent surround suppression models for contour detection. Pattern Recogn 60:51–61

    Google Scholar 

  50. Walker GA, Ohzawa I, Freeman RD (2000) Suppression outside the classical cortical receptive field. Vis Neurosci 17(03):369–379

    Google Scholar 

  51. Wei H, Lang B, Zuo Q (2013) Contour detection model with multi-scale integration based on non-classical receptive field. Neurocomputing 103:247–262

    Google Scholar 

  52. Wei H, Dai Z-L, Zuo Q-S (2016) A ganglion-cell-based primary image representation method and its contribution to object recognition. Connect Sci 28(4):311–331

    Google Scholar 

  53. Xie S, Tu Z (2015) Holistically-nested edge detection. In: International comference on computer vision, pp 1395–1403

    Google Scholar 

  54. Xu W-F, Shen Z-M, Li C-Y (2005) Spatial phase sensitivity of V1 neurons in alert monkey. Cereb Cortex 15(11):1697–1702

    Google Scholar 

  55. Yang K, Gao S, Li C, Li Y (2013) Efficient color boundary detection with color-opponent mechanisms. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 2810–2817

    Google Scholar 

  56. Yang K-F, Li C-Y, Li Y-J (2014) Multifeature-based surround inhibition improves contour detection in natural images. IEEE Trans Image Process 23(12):5020–5032

    MathSciNet  MATH  Google Scholar 

  57. Yang K-F, Gao S-B, Guo C-F, Li C-Y, Li Y-J (2015) Boundary detection using double-opponency and spatial sparseness constraint. IEEE Trans Image Process 24(8):2565–2578

    MathSciNet  MATH  Google Scholar 

  58. Yang K-F, Gao S-B, Li Y-J (2015) Efficient illuminant estimation for color constancy using grey pixels. CVPR:2254–2263

  59. Yang K-F, Li H, Li C-Y, Li Y-J (2016) A unified framework for salient structure detection by contour-guided visual search. IEEE Trans Image Process 25(8):3475–3488

    MathSciNet  MATH  Google Scholar 

  60. Zeng C, Li Y, Li C (2011) Center–surround interaction with adaptive inhibition: a computational model for contour detection. NeuroImage 55(1):49–66

    Google Scholar 

  61. Zeng C, Li Y, Yang K, Li C (2011) Contour detection based on a non-classical receptive field model with butterfly-shaped inhibition subregions. Neurocomputing 74(10):1527–1534

    Google Scholar 

Download references

Acknowledgments

The authors appreciate the anonymous reviewers for their helpful and constructive comments on an earlier draft of this paper. This work was supported by the National Natural Science Foundation of China (Grant No. 61866002), Guangxi Natural Science Foundation (Grant No. 2020GXNSFDA297006 Grant No. 2018GXNSFAA138122 and Grant No. 2015GXNSFAA139293).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Lin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Wen, ZQ., Xu, GL. et al. A bio-inspired contour detection model using multiple cues inhibition in primary visual cortex. Multimed Tools Appl 81, 11027–11048 (2022). https://doi.org/10.1007/s11042-022-12356-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12356-7

Keywords

Navigation