Skip to main content

Advertisement

Three dimensional objects recognition & pattern recognition technique; related challenges: A review

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

3D object recognition and pattern recognition are active and fast-growing research areas in the field of computer vision. It is mandatory to define the pattern class, feature extraction, design classifiers, clustering, and selection of test datasets and evaluate performance for any pattern recognition system. The pattern recognition system recognizes the object, so it is required to extract the features in such a way that it will be suitable for a particular recognition method. Features can be retrieved either locally or globally. The object recognition technique is divided into two parts: the local feature extraction method and the global feature extraction method. Many researchers have done admirable work in the field of local and global feature extraction. Local feature-based techniques are more suitable for the real-world scene. The Global feature-based methods are more suitable for retrieving the 3D model & identifying the object’s shape when the object’s geometric structure is fragile.

A lot of research has been done on pattern recognition in the last 50 years. Still, no single technique can be used for all types of applications, such as bioinformatics, data mining, speech recognition, remote sensing, multimedia applications, text detection, localization, etc. The main agenda of this paper is to summarize the 3D object recognition methodologies. This paper provides a complete study of 3D object recognition based on local and global feature-based methods and different techniques of pattern recognition. We have tried to summarize the results of different technologies and the future scope of this paper’s particular technique. We enlisted the accessible online 3D database and their attributes, evaluation parameters of the 3D datasets. This paper will immensely help the researchers to Identify the research gap and limitations in pattern recognition and object recognition so that the researchers will be motivated to do something new in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3D-DWT:

Three Dimensional wavelets transform

GLCM:

Gray Level Co-occurrence Matrix

EDMS:

Edge Direction Matrixes

CVFH:

clustered viewpoint feature histogram

GAK:

Global alignment kernels

GGFM:

Global Geometric Feature Map

HOG-TOP:

Histogram of Oriented Gradients from Three Orthogonal of Planes

S3DRGFs:

spatial 3-D relational geometric features

3DCS-LBP-3D:

center-symmetric local binary patterns

SLKP:

spatial local key point

LDFA:

local deep feature alignment

GOOD:

Global Orthographic Object Descriptor

GASD:

Globally Aligned Spatial Distribution

GFH:

Global Fourier Histogram

VFH:

Viewpoint Feature Histogram

OUR-CVFH:

Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram

GSH:

Global Structure Histograms

DA:

Discriminant Analysis

SDVS:

Shape Distribution on Voxel Surfaces

PCA:

Principal Component Analysis

BPNN:

Backpropagation Neural Network

GRNN:

General Regression Neural Network

SSR:

Scale Retinex algorithm

PCANet:

Palmprint recognition using unsupervised convolutional deep learning network

HSA:

Hybrid simulated annealing

WLPCA:

Widely linear PCA

SVM:

support vector machine

3DDFA-d:

3D Dense Face Alignment

CNN:

Convolution Neural Network

Isomap-E-R:

Isomap-Eigenanalysis-Regression

TLE:

Trimmed Likelihood Estimator

HMC:

Hidden Markov Chains

RMSEs:

root-mean-square errors

RSEFNN:

recurrent self-evolving fuzzy neural network

SVR:

Support vector regression

SONFIN:

self-organizing neural fuzzy inference network

NPCA-SVM:

Non-negative PCA-SVM

KELM:

kernel-based extreme learning machine

FWNN:

fuzzy wavelet neural network

TRFN:

type recurrent fuzzy network

RWENN:

Recurrent wavelet-based Elman neural network

3DHMM:

Three-dimensional hidden Markov model

HMKM:

Hidden Markov Kernel Machine

EM:

Expectation Maximization

SeqViews2SeqLabels:

Sequential Views to Sequential Labels

Bi-RNN:

Bidirectional Recurrent Neural Network

CER:

Character error rate

A3C:

asynchronous advantage actor-critic

MLDP:

multilingual dependency parser

HGM:

hierarchical graph method

VNM:

virtual node method

CKY:

Coke Kasami Younger

CFG:

Context-Free Grammar

References

  1. Abarghouei AA, Ghanizadeh A, Sinaie S, Shamsuddin SM (2009) A Survey of Pattern Recognition Applications in Cancer Diagnosis. In: International Conference of Soft Computing and Pattern Recognition, Malacca, pp. 448–453

  2. Abiodun OI, Kiru MU, Jantan A, Omolara AE, Dada KV, Umar AM, Linus OU, Arshad H, Kazaure AA, Gana U (2019) Comprehensive review of artificial neural network applications to pattern recognition. IEEE Access 7(1):158820–158846

    Article  Google Scholar 

  3. Ahmad T, Jameel A, Ahmad B, (2011) Pattern recognition using statistical and neural techniques. International Conference on Computer Networks and Information Technology, pp. 87–91

  4. Aldoma A et al (2011) CAD-model recognition and 6DOF pose estimation using 3D cues. In: IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 585–592

  5. Aldoma A, Tombari F, Di Stefano L, Vincze M (2012) A global hypotheses verification method for 3D object recognition. In: European Conference on Computer Vision, pp.511–524

  6. Aldoma A, Tombari F, Rusu RB, Vincze M (2012) OUR-CVFH–oriented, unique and repeatable clustered viewpoint feature histogram for object recognition and 6DOF pose estimation. In: Joint DAGM (German Association for Pattern Recognition) and OAGM Symposium, pp. 113–122

  7. Altun Y, Hofmann T, Johnson M (2003) Discriminative learning for label sequences via boosting. In: Advances in neural information processing systems, pp. 1001–1008

  8. Altun Y, Tsochantaridis I, Hofmann T (2003) Hidden Markov support vector machines. In Proceedings of the 20th international conference on machine learning (ICML-03), pp. 3–10

  9. Aly S, Mohamed A (2019) Unknown-length handwritten numeral string recognition using Cascade of PCA-SVMNet classifiers. IEEE Access 7(1):52024–52034

    Article  Google Scholar 

  10. Ariesta MC, Wiryana F, Suharjito, Zahra A (2018) Sentence Level Indonesian Sign Language Recognition Using 3D Convolutional Neural Network and Bidirectional Recurrent Neural Network. In: Indonesian Association for Pattern Recognition International Conference (INAPR), pp. 16–22

  11. Arman F, Aggarwal J (1993) Model-based object recognition in dense-range images–a review. ACM Comput Surv 25(1):5–43

    Article  Google Scholar 

  12. Armeni I, Sener O, Zamir AR, Jiang H, Brilakis I, Fischer M, Savarese S (2016) 3d semantic parsing of large-scale indoor spaces. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 89–93

  13. Salem MZ, AL-Sammarraie AHK (2021) face detection and recognition. Turkish J Comput Math Educ 12(7):3286–3290

  14. Badr G, Oommen BJ (2006) On optimizing syntactic pattern recognition using tries and AI-based heuristic-search strategies. IEEE Trans Syst Man Cybern Part B (Cybern) 36(3):611–622

    Article  Google Scholar 

  15. Bariya P, Nishino K (2010) Scale-hierarchical 3D object recognition in cluttered scenes. In: IEEE computer society conference on computer vision and pattern recognition, San Francisco, pp 1657-1664

  16. Bariya P, Novatnack J, Schwartz G, Nishino K (2012) 3D geometric scale variability in range images: features and descriptors. Int J Comput Vis 99(2):232–255

    Article  MathSciNet  Google Scholar 

  17. Bauer A, Gornitz N, Biegler F, Muller K, Kloft M (2014) Efficient algorithms for exact inference in sequence labeling SVMs. IEEE Trans Neural Netw Learn Syst 25(5):870–881

    Article  Google Scholar 

  18. Bayramoglu N, Alatan A (2010) Shape index SIFT: Range image recognition using local features. In: 20th International Conference on Pattern Recognition, pp. 352–355

  19. Besl P, Jain R (1985) Three-dimensional object recognition. ACM Comput Surv 17(1):75–145

    Article  Google Scholar 

  20. Bishop CM (2006) Pattern recognition and machine learning. springer. https://doi.org/10.1108/03684920710743466. ISSN 0368-492X

  21. Brady J, Nandhakumar N, Aggarwal J (1988) Recent progress in the recognition of objects from range data. In: 9th International Conference on Pattern Recognition, pp. 85–92

  22. Bricq S, Collet C, Armspach J-P (2008) 3D Brain MRI segmentation based on robust Hidden Markov Chain. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 517–520

  23. Bronstein AM, Bronstein MM, Kimmel R (2009) Introduction. In Numerical geometry of non-rigid shapes. Essay, Springer Science+Business Media, LLC, pp. 1–9

  24. Cui L, Bai L, Wang Y, Bai X, Zhang Z, Hancock ER (2016) P2P Lending Analysis Using the Most Relevant Graph-Based Features. In: Robles-Kelly A, Loog M, Biggio B, Escolano F, Wilson R (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2016. Lecture Notes in Computer Science, vol 10029. Springer, Cham. https://doi.org/10.1007/978-3-319-49055-7_1

  25. Burnham AJ, MacGregor JF, Viveros R (1999) Latent variable multivariate regression modeling. Chemom Intell Lab Syst 48(2):167–180

    Article  Google Scholar 

  26. Bustos B, Keim D, Saupe D, Schreck T, Vranić D (2005) Feature-based similarity search in 3D object databases. ACM Comput Surv 37(4):345–387

    Article  Google Scholar 

  27. Campbell R, Flynn P (2001) A survey of free-form object representation and recognition techniques. Comput Vis Image Underst 81(2):166–210

    Article  MATH  Google Scholar 

  28. Castellani U, Cristani M, Fantoni S, Murino V (2008) Sparse points matching by combining 3D mesh saliency with statistical descriptors. Computer Graphics Forum 27(2):643–652

    Article  Google Scholar 

  29. Chaa M, Akhtar Z, Attia A (2019) 3D palmprint recognition using unsupervised convolutional deep learning network and SVM classifier. IET Image Process 13(5):736–745

    Article  Google Scholar 

  30. Chang AX, Funkhouser TA, Guibas LJ, Hanrahan P, Huang Q, Li Z, Savarese S, Savva M, Song S, Su H, Xiao J, Yi L, Yu F, (2015) ShapeNet: An information-rich 3D model repository. CoRR, vol. abs/1512.03012

  31. Chatterjee A, Bhatia V, Prakash S (2017) Anti-spoof touchless 3D fingerprint recognition system using single shot fringe projection and biospeckle analysis. Opt Lasers Eng 95(1):1–7

    Article  Google Scholar 

  32. Chen H, Bhanu B (2007) 3D free-form object recognition in range images using local surface patches. Pattern Recogn Lett 28(10):1252–1262

    Article  Google Scholar 

  33. Chen T, Dai B, Liu D, Song J (2014) Performance of global descriptors for Velodyne-based urban object recognition. In: IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, pp. 667–673

  34. Chen Z, Zhu Q, Soh YC, Zhang L (2017) Robust human activity recognition using smartphone sensors via CT-PCA and online SVM. IEEE Trans Ind Inform 13(6):3070–3080

    Article  Google Scholar 

  35. Chiswell I, Hodges W (2007) Mathematical logic, vol 3. OUP, Oxford ISBN 9780199215621. OCLC 799802313

    MATH  Google Scholar 

  36. Choudhary S, Lakhwani K, Agrawal S (2012) An efficient hybrid technique of feature extraction for facial expression recognition using AdaBoost Classifier. Int J Eng Res Technol 8(1)

  37. Chui H, Rangarajan A, Zhang J, Leonard CM (2004) Unsupervised learning of an atlas from unlabeled point-sets. IEEE Trans Pattern Anal Mach Intell 26(2):160–172

    Article  Google Scholar 

  38. Creusot C, Pears N, Austin J (2013) A machine-learning approach to keypoint detection and landmarking on 3D meshes. Int J Comput Vis 102(1–3):146–179

    Article  Google Scholar 

  39. Cunhe L, Chenggang W (2010) A new semi-supervised support vector machine learning algorithm based on active learning. In: 2nd International Conference on Future Computer and Communication, pp. V3–638-V3–641

  40. D’Addona DM, Ullah AS, Matarazzo D (2017) Tool-wear prediction and pattern- recognition using artificial neural network and DNA-based computing. J Intell Manuf 27(6):1285–1301

    Article  Google Scholar 

  41. Davis CS (1992) The video plankton recorder (VPR): design and initial results. Arch Hydrobiol Beih Ergebn Limnol 36(1):67–81

    Google Scholar 

  42. Deng W, Hu J, Lu J, Guo J (2014) Transform-invariant PCA: a unified approach to fully automatic FaceAlignment, representation, and recognition. IEEE Trans Pattern Anal Mach Intell 36(6):1275–1284

    Article  Google Scholar 

  43. Domingos P (2012) A few useful things to know about machine learning. Commun ACM 55(10):78–87

    Article  Google Scholar 

  44. Dong M, Chen Y (2008) Salient region detection and feature extraction in 3D visual data. In: 15th IEEE International Conference on Image Processing, pp. 185–188

  45. Drost B, Ulrich M, Navab N, Ilic S (2010) Model globally, match locally: Efficient and robust 3D object recognition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition, pp 998–1005

  46. Drost B, Ulrich M, Navab N, Ilic S (2010) Model globally, match locally: Efficient and robust 3D object recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 998–1005

  47. Drost B, Ulrich M, Navab N, Ilic S (2010) Model globally, Match locally: Efficient and robust 3d object recognition. In: IEEE computer society conference on computer vision and pattern recognition, pp. 998–1005

  48. Durbin R, Eddy S, Krogh A, Mitchison G (2000) Biological sequence analysis. Cambridge Univ. Press

    MATH  Google Scholar 

  49. Dutton DM, Conroy GV (1997) A review of machine learning. Knowl Eng Rev 12(4):341–367

    Article  Google Scholar 

  50. Fan Z, Li Z, Li W, You Y, Chen W, Li C (2017) A Combined Texture-Shape Global 3D Feature Descriptor for Object Recognition and Grasping. 2017 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII), pp. 47–54

  51. Flint A, Dick A, Hengel A (2007) THRIFT: Local 3D structure recognition. In: 9th International Conference on Digital Image Computing Techniques and Applications, pp. 182–188

  52. Fookes C, Williams J, Bennamoun M (2000) Global 3D rigid registration of medical images. Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101), pp. 447–450

  53. Fu KS (1982) Syntactic pattern recognition and applications. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  54. Ganapathi II, Prakash S (2018) 3D ear recognition using global and local features. IET Biometrics 7(3):232–241

    Article  Google Scholar 

  55. Gao G, Yang J, Jing XY (2017) Learning robust and discriminative low-rank representations for face recognition with occlusion. Pattern Recogn 66(1):129–143

    Article  Google Scholar 

  56. Georghiades A, Belhumeur P, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Analysis and Machine Intelligence 23(6):643–660

    Article  Google Scholar 

  57. Chen L, Man H, Nefian AV (2005) Face recognition based on multi-class mapping of Fisher scores. Pattern Recognition 38(6):799–811

  58. Germann M, Breitenstein MD, Park IK, Pfister H (2007) Automatic Pose Estimation for Range Images on the GPU. In: 6th International Conference on 3-D Digital Imaging and Modeling (3DIM 2007), pp. 81–90

  59. Ghasemzadeh A, Demirel H (2018) 3D discrete wavelet transform-based feature extraction for hyperspectral face recognition. IET Biometrics 7(1):49–55

    Article  Google Scholar 

  60. Ghinea G, Kannan R, Kannaiyan S (2014) Gradient-orientation-based PCA subspace for novel face recognition. IEEE Access 2(1):914–920

    Article  Google Scholar 

  61. Guo Y, Wan J, Lu M, Niu W (2013) A parts-based method for articulated target recognition in laser radar data. Optik 124(17):2727–2733

    Article  Google Scholar 

  62. Guo Y, Sohel F, Bennamoun M, Lu M, Wan J (2013) TriSI: A distinctive local surface descriptor for 3D modeling and object recognition. In: 8th International Conference on Computer Graphics Theory and Applications, pp. 86–93

  63. Guo Y, Sohel F, Bennamoun M, Lu M, Wan J (2013) Rotational projection statistics for 3D local surface description and object recognition. Int J Comput Vis 105(1):63–86

    Article  MathSciNet  MATH  Google Scholar 

  64. Han X (2010) Nonnegative principal component analysis for Cancer molecular pattern discovery. IEEE/ACM Trans Comput Biol Bioinform 7(3):537–549

    Article  Google Scholar 

  65. Han Z, Shang M, Liu Z, Vong CM, Liu YS, Zwicker M, Han J, Chen CLP (2019) SeqViews2SeqLabels: learning 3D global features via aggregating sequential views by RNN with attention. IEEE Trans Image Process 28(2):658–672

    Article  MathSciNet  MATH  Google Scholar 

  66. Helmer S, Meger D, Muja M, Little J, Lowe D (2010) Multiple viewpoint recognition and localization. In: 10th Asian Conference on Computer Vision, pp. 464–477

  67. Hetzel G, Leibe B, Levi P, Schiele B (2001) 3D object recognition from range images using local feature histograms. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. II–II

  68. Huang K, Leu D (2019) Syntactic pattern recognition for wavelet clustering in seismogram. IEEE J Sel Top Appl Earth Observat Remote Sens 12(7):2453–2461

    Article  Google Scholar 

  69. Husen MN, Lee S (2016) Continuous Car Driving intention recognition with syntactic pattern approach. In: International Conference on Information and Communication Technology (ICICTM), pp. 71–76

  70. Hussein S, Kandel P, Bolan CW, Wallace MB, Bagci U (Aug. 2019) Lung and pancreatic tumor characterization in the deep learning era: novel supervised and unsupervised learning approaches. IEEE Trans Med Imaging 38(8):1777–1787

    Article  Google Scholar 

  71. Iwana BK, Frinken V, Riesen K (2017) Efficient temporal pattern recognition utilizing dissimilarity space embedding with discriminative prototypes. Pattern Recogn 64(1):268–276

    Article  MATH  Google Scholar 

  72. Jaf S, Calder C (2019) Deep learning for natural language parsing. IEEE Access 7(1):131363–131373

    Article  Google Scholar 

  73. Jain AK, Duin RPW, Mao J (Jan. 2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Article  Google Scholar 

  74. Jaiswal S, Almaev TR, Valstar MF (2013) Guided unsupervised learning of mode-specific models for facial point detection in the wild. In: IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 370–377

  75. Janoch A, Karayev S, Jia Y, Barron J, Fritz M, Saenko K, Darrell T, (2011) A category-level 3-D object dataset: Putting the Kinect to work. In: IEEE International Conference on Computer Vision Workshops, pp. 1168–1174

  76. Jasmin GD, Rajan EG (2013) Normalized vector codes for object recognition using artificial neural networks in the framework of picture description languages. Global J Comput Sci Technol 11(1):207–2018

    Google Scholar 

  77. Kamper H, Jansen A, Goldwater S (2015) Fully unsupervised small vocabulary speech recognition using a segmental Bayesian model. In: 16th Annual Conference of the International Speech Communication Association, pp. 201–208

  78. Karg M, Kühnlenz K, Buss M (2010) Recognition of effect based on gait patterns. IEEE Trans Syst Man Cybern Part B (Cybern) 40(4):1050–1061

    Article  Google Scholar 

  79. Kasaei SH, Tom AM, Lopes LS, Oliveira M (2016) Good: a global orthographic object descriptor for 3d object recognition and manipulation. Pattern Recogn Lett 83(1):312–320

    Article  Google Scholar 

  80. Kiran PS, Kumar DA, Kishore PVV, Kumar EK, Kumar MTK, Sastry ASCS (2019) Investigation of 3-D Relational Geometric Features for Kernel- Based 3-D Sign Language Recognition. In: IEEE International Conference on Intelligent Systems and Green Technology (ICISGT), pp. 31–313

  81. Knopp J, Prasad M, Willems G, Timofte R, Van Gool L (2010) Hough transform and 3D SURF for robust three-dimensional classification. In: 11th European Conference on Computer Vision, pp. 589–602

  82. Kubo Y, Watanabe S, Nakamura A, McDermott E, Kobayashi T (2010) A sequential pattern classifier based on hidden Markov kernel machine and its application to phoneme classification. IEEE J Sel Top Signal Process 4(6):974–984

    Article  Google Scholar 

  83. Kumar S, Singh S, Kumar J (2017) A study on face recognition techniques with age and gender classification. In: IEEE international conference on computing, Communication and Automation (ICCCA), pp. 1001–1006

  84. Kumar S, Singh S, Kumar J (2018) Automatic live facial expression detection using genetic algorithm with Haar wavelet features and SVM. Wirel Pers Commun 103(3):2435–2453

    Article  Google Scholar 

  85. Kumar S, Singh S, Kumar J (2018) Live detection of face using machine learning with multi-feature method. Wirel Pers Commun 103(3):2353–2375

    Article  Google Scholar 

  86. Kumar DA, Sastry ASCS, Kishore PVV, Kumar EK, Kumar MTK (2019) S3DRGF: spatial 3-D relational geometric features for 3-D sign language representation and recognition. IEEE Signal Process Lett 26(1):169–173

    Article  Google Scholar 

  87. Kumar S, Singh S, Kumar J (2019) Multiple Face Detection Using Hybrid Features with SVM Classifier. In: Data and Communication Networks, pp. 253–265

  88. Kumar S, Singh S, Kumar J (2019) Gender Classification Using Machine Learning with Multi-Feature Method. In: 9th IEEE Annual Computing and Communication Workshop and Conference (CCWC), pp. 0648–0653

  89. Kwan RK-S, Evans AC, Pike GB (1996) An extensible MRI simulator for post-processing evaluation. Visualization Biomedical Comput (VBC’96) 1131(2):135–140

    Article  Google Scholar 

  90. Lai K, Bo L, Ren X, Fox D(2011) A large-scale hierarchical multi-view RGB-D object dataset. In: IEEE International Conference on Robotics and Automation, pp. 1817–1824

  91. Le V, Brandt J, Lin Z, Bourdev L, Huang TS (2012) Interactive facial feature localization. In: European conference on computer vision, pp. 679–692

  92. Lee L, Jean F (2013) Adaptation of hidden Markov models for recognizing speech of reduced frame rate. IEEE Trans Cybern 43(6):2114–2121

    Article  Google Scholar 

  93. Lee J, Park CH (2010) Hybrid simulated annealing and its application to optimization of hidden Markov models for visual speech recognition. IEEE Trans Syst Man Cybern Part B (Cybern) 40(4):1188–1196

    Article  Google Scholar 

  94. Lee KC, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Analysis and Machine Intelligence 27(5):684–698

    Article  Google Scholar 

  95. Lee H, Pham P, Largman Y, Ng AY (2009) Unsupervised feature learning for audio classification using convolutional deep belief networks in Advances. In: Neural information processing systems, pp. 1096–1104

  96. Lei Y, Bennamoun M, Hayat M, Guo Y (2013) An efficient3D face recognition approach using local geometrical signatures. Pattern Recogn 47(2):502–524

    Google Scholar 

  97. Li X, Guskov I (2007) 3D object recognition from range images using pyramid matching. In: 11th IEEE International Conference on Computer Vision, pp. 1–6

  98. Li Z, Fang C, Zhang S (2018) Deep feature representation for the computational analytics of 3D neuronal morphology. In: 15th IEEE International Symposium on Biomedical Imaging (ISBI 2018), pp. 926–929

  99. Lima JPSdM, Teichrieb V (2016) An Efficient Global Point Cloud Descriptor for Object Recognition and Pose Estimation. In: 29th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Sao Paulo, pp. 56–63

  100. Lisin DA, Mattar MA, Blaschko MB, Learned-Miller EG, Benfield MC (2005) Combining Local and Global Image Features for Object Class Recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops, San Diego, pp. 47–47

  101. Liu Q, Liao X, Carin L (2007) Semi-Supervised Life-Long Learning with Application to Sensing. In: 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, St. Thomas, pp. 1–4

  102. Liu Y, Lin Y, Wu S, Chuang C, Lin C (2016) Brain dynamics in predicting driving fatigue using a recurrent self-evolving fuzzy neural network. IEEE Trans Neural Netw Learn Syst 27(2):347–360

    Article  Google Scholar 

  103. Liu F et al (2017) 3DCNN-DQN-RNN: A Deep Reinforcement Learning Framework for Semantic Parsing of Large-Scale 3D Point Clouds. In: IEEE International Conference on Computer Vision (ICCV), pp. 5679–5688

  104. Lou Z, Gevers T, Hu N (2015) Extracting 3D layout from a single image using global image structures. IEEE Trans Image Process 24(10):3098–3108

    Article  MathSciNet  MATH  Google Scholar 

  105. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  106. Madry M, Ek CH, Detry R, Hang K, Kragic D (2012) Improving generalization for 3D object categorization with Global Structure Histograms. In: IEEE International Conference on Intelligent Robots and Systems, pp. 1379–1386

  107. Mage L, Baati N, Nanchen A, Stoessel F, Meyer T (2017) A systematic approach for thermal stability predictions of chemicals and their risk assessment: pattern recognition and compounds classification based on thermal decomposition curves. Process Saf Environ Prot 110(2):43–52

    Article  Google Scholar 

  108. Maharani DA, Fakhrurroja H, Riyanto, Machbub C (2018) Hand gesture recognition using K-means clustering and Support Vector Machine. 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang, pp. 1–6

  109. Mahendran S, Ali H, Vidal R (2017) 3D Pose Regression Using Convolutional Neural Networks. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 494–495

  110. Mall S, Jaiswal UC (2014) Resolving issues in parsing technique in machine translation from Hindi language to English language. In: International Conference on Computer and Communication Technology (ICCCT), pp. 55–58

  111. Mamic G, Bennamoun M (2002) Representation and recognition of 3D free-form objects. Digital Signal Processing 12(1):47–76

    Article  MATH  Google Scholar 

  112. Manning CD, Schutze H (1999) Foundations of statistical natural language processing. MIT Press 1–9

  113. W. Maorui and M. Zhichun, "Research of 3D ear recognition based on local feature matching," Proceedings of the 31st Chinese Control Conference, pp. 3779–3782, 2012.

  114. Martinez A, Benavente R (1998) The AR face database. CVC Technical Report 24

  115. Mian A, Bennamoun M, Owens R (2006) Three-dimensional model-based object recognition and segmentation in cluttered scenes. IEEE Trans Pattern Anal Mach Intell 28(10):1584–1601

    Article  Google Scholar 

  116. Mian A, Bennamoun M, Owens R (2010) On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int J Comput Vis 89(2):348–361

    Article  Google Scholar 

  117. Muja M, Rusu RB, Bradski G, Lowe DG (2011) REIN - A fast, robust, scalable REcognition Infrastructure. In: IEEE International Conference on Robotics and Automation, pp. 2939–2946

  118. Naeimizaghiani M, Abdullah SNHS, Bataineh B, PirahanSiah F (2011) Character recognition based on global feature extraction. Proceedings of the 2011 International Conference on Electrical Engineering and Informatics, pp. 1–4

  119. Nascimento JC, Figueiredo MAT, Marques JS (2010) Trajectory classification using switched dynamical hidden Markov models. IEEE Trans Image Process 19(5):1338–1348

    Article  MathSciNet  MATH  Google Scholar 

  120. Naseem RT, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112

    Article  Google Scholar 

  121. Naz S, Umar AI, Ahmad R, Siddiqi I, Ahmed SB, Razzak MI, Shafait F (2017) Urdu Nastaliq recognition using convolutional–recursive deep learning. Neurocomputing 243(2):80–87

    Article  Google Scholar 

  122. Niu JW, Zheng XH, Zhao M, Fan N, Ding ST (2011) Landmark automatic identification from three dimensional (3D) data by using Hidden Markov Model (HMM). In: 18th IEEE International Conference on Industrial Engineering and Engineering Management, pp. 600–604

  123. Nock R, Nielsen F (2006) On weighting clustering. IEEE Trans Pattern Anal Mach Intell 28(8):1223–1235

    Article  Google Scholar 

  124. Ogiela MR, Tadeusiewicz R (2000) Application of syntactic methods of pattern recognition for data mining and knowledge discovery in medicine. In: International Society for Optics and Photonics, Data Mining and Knowledge Discovery: Theory, Tools, and Technology II, vol. 4057, pp. 308–318

  125. Onishi K, Takiguchi T, Ariki Y (2008) 3D human posture estimation using the HOG features from the monocular image. In: 19th International Conference on Pattern Recognition, pp. 1–4

  126. Orabona F, Crammer K, Cesa-Bianchi N (2015) A generalized online mirror descent with applications to classification and regression. Mach Learn 99(3):411–435

    Article  MathSciNet  MATH  Google Scholar 

  127. Osada R, Funkhouser T, Chazelle B, Dobkin D (2002) Shape distributions. ACM Trans Graph 21(4):807–832

    Article  MathSciNet  MATH  Google Scholar 

  128. Pan X, Lu J, Liu F (2019) 3D patch-based sparse learning for style feature extraction. IEEE Access 7(1):172403–172412

    Article  Google Scholar 

  129. Papaioannou A, Zafeiriou S (2014) Principal component analysis with complex kernel: the widely linear model. IEEE Trans Neural Netw Learn Syst 25(9):1719–1726

    Article  Google Scholar 

  130. Papalexopoulos AD, Hesterberg TC (1990) A regression-based approach to short-term system load forecasting. IEEE Trans Power Syst 5(4):1535–1547

    Article  Google Scholar 

  131. Paquet E, Rioux M, Murching A, Naveen T, Tabatabai A (2000) Description of shape information for 2-D and 3-D objects. Signal Process Image Commun 16(1):103–122

    Article  Google Scholar 

  132. Pavlidis T (1977) Structural pattern recognition. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  133. Peralta D, Triguero I, García S, Saeys Y, Benitez JM, Herrera F (2017) Distributed incremental fingerprint identification with reduced database penetration rate using a hierarchical classification based on feature fusion and selection. Knowl-Based Syst 126(3):91–103

    Article  Google Scholar 

  134. Peralta D, Triguero I, García S, Saeys Y, Benitez JM, Herrera F (2018) On the use of convolutional neural networks for robust classification of multiple fingerprint captures. Int J Intell Syst 33(1):213–230

    Article  Google Scholar 

  135. Perez-Cortes J, Guardiola J, Perez-Jimenez A (2009) Pattern Recognition with Embedded Systems Technology: A Survey. In: 20th International Workshop on Database and Expert Systems Application, pp. 19–19

  136. Phillips PJ, Wechsler H, Huang JS, Rauss PJ (1998) The FERET database and evaluation procedure for face-recognition algorithms. Image Vis Comput 16(5):295–306

    Article  Google Scholar 

  137. Pontil M, Verri A (1998) Support vector machines for 3D object recognition. IEEE Trans Pattern Anal Mach Intell 20(6):637–646

    Article  Google Scholar 

  138. Ramanathan R, Engle R, Granger CWJ, Vahid-Araghi F, Brace C (1997) Short-run forecasts of electricity loads and peaks. Int J Forecast 13(2):161–117

    Article  Google Scholar 

  139. Reddy TA, Claridge DE (1994) Using synthetic data to evaluate multiple regression and principal component analyses for statistical modeling of daily building energy consumption. Energy and buildings 21(1):35–44

    Article  Google Scholar 

  140. Reddy TA, Katipamula S, Kissock JK, Claridge DE (February 1, 1995) The functional basis of steady-state thermal energy use in air-side HVAC equipment. ASME. J Sol Energy Eng 117(1):31–39. https://doi.org/10.1115/1.2847720

  141. Rusu RB, Holzbach A, Beetz M, Bradski G (2009) Detecting and segmenting objects for mobile manipulation. In: IEEE International Conference on Computer Vision Workshops, pp. 47–54

  142. Rusu R, Bradski G, Thibaux R, Hsu J (2010) Fast 3D recognition and pose using the viewpoint feature histogram. In IEEE International Conference on Intelligent Robots and Systems, pp. 2155–2162

  143. Sagonas C, Tzimiropoulos G, Zafeiriou S, Pantic M (2013) A semiautomatic methodology for facial landmark annotation. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 896–903

  144. Samaria F, Harter A (1994) Parameterisation of a Stochastic Model for Human Face Identification. In: 2nd IEEE Workshop Applications of Computer Vision, pp. 138–142

  145. Sarker J, Billah M, Mamun MA (2019) Textual Question Answering for Semantic Parsing in Natural Language Processing. In: 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), pp. 1–5

  146. Sarwinda D, Bustamam A (2018) 3D-HOG Features –Based Classification using MRI Images to Early Diagnosis of Alzheimer’s Disease. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS), pp. 457–462

  147. Seo M, Hajishirzi H, Farhadi A (2016) Query-Regression Networks for Machine Comprehension. arXiv preprint arXiv:1606.04582, vol. 534

  148. Shafer CM, Seewaldt VL, Lo JY (2011) Validation of a 3D hidden-Markov model for breast tissue segmentation and density estimation from MR and tomosynthesis images. In: Biomedical Sciences and Engineering Conference: Image Informatics and Analytics in Biomedicine, pp. 1–4

  149. Shang L, Greenspan M (2010) Real-time object recognition in sparse range images using error surface embedding. Int J Comput Vis 89(2):211–228

    Article  Google Scholar 

  150. Shen Y, Wang J (2008) An improved algebraic criterion for global exponential stability of recurrent neural networks with time-varying delays. IEEE Trans Neural Netw 19(3):528–531

    Article  Google Scholar 

  151. Sivic J, Russell BC, Efros AA, Zisserman A, Freeman WT (2005) Discovering objects and their location in images. In: 10th IEEE International Conference on Computer Vision (ICCV'05), pp. 370–377

  152. Sok P, Xiao T, Azeze Y, Jayaraman A, Albert MV (2018) Activity recognition for incomplete spinal cord injury subjects using hidden Markov models. IEEE Sensors J 18(15):6369–6374

    Article  Google Scholar 

  153. Soni R, Kumar B, Chand S (2019) Optimal feature and classifier selection for text region classification in natural scene images using Weka tool. Multimed Tools Appl 78(22):31757–31791

    Article  Google Scholar 

  154. Söylemez ÖF, Ergen B, Söylemez NH (2017) A 3D facial expression recognition system based on SVM classifier using distance-based features. 2017 25th Signal Processing and Communications Applications Conference (SIU), pp. 1–3

  155. Sturm J, Magnenat S, Engelhard N, Pomerleau F, Colas F, Burgard W, Cremers D, Siegwart R (2011) Towards a benchmark for RGB-D SLAM evaluation. In: the RGB-D Workshop on Advanced Reasoning with Depth Cameras at Robotics: Science and Systems Conference, pp. 1–3

  156. Sukno FM, Waddington JL, Whelan PF (2012) Comparing 3D descriptors for local search of craniofacial landmarks. In: International symposium on visual computing, pp. 92–103

  157. Sun Y, Abidi MA (2001) Surface matching by 3D point's fingerprint. In: 8th IEEE International Conference on Computer Vision, pp. 263–269

  158. Taati B, Greenspan M (2011) Local shape descriptor selection for object recognition in range data. Comput Vis Image Underst 115(5):681–694

    Article  Google Scholar 

  159. Taati B, Bondy M, Jasiobedzki P, Greenspan M (2007) Variable in range data. In 11th IEEE International Conference on Computer Vision, pp. 1–8

  160. Tang S, Wang X, Lv X, Han TX, Keller J, He Z, Skubic M, Lao S (2012) Histogram of oriented normal vectors for object recognition with a depth sensor. In: 11th Asian Conference on Computer Vision, pp. 525–538

  161. Taskar B, Guestrin C, Koller D (2004) Max-margin Markov networks. In: Advances in neural information processing systems, pp. 25–32, https://proceedings.neurips.cc/paper/2003/hash/878d5691c824ee2aaf770f7d36c151d6-Abstract.html

  162. Thang LQ, Tran ÐÐ (2012) A Hierarchical Graph Method Using in A* Algorithm for Vietnamese Parsing Technique. In: International Conference on Asian Language Processing, pp. 25–28

  163. Tombari F, Salti S, Di Stefano L (2010) Unique signatures of histograms for local surface description. In: European Conference on Computer Vision, pp. 356–369

  164. Tombari F, Salti S, Di Stefano L (2010) Unique shape context for 3D data description. In: ACM Workshop on 3D Object Retrieval, pp. 57–62

  165. Tombari F, Salti S, Di Stefano L (2011) A combined texture shape descriptor for enhanced 3D feature matching. In: 18th IEEE International Conference on Image Processing, pp.809–812

  166. Tomita M, Ng SK (1991) The Generalized LR Parsing Algorithm. In: Tomita M (eds) Generalized LR Parsing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4034-2_1

  167. Ueda M et al (2019) An Age Estimation Method Using 3D-CNN from Brain MRI Images. In: 16th IEEE International Symposium on Biomedical Imaging (ISBI’19), pp. 380–383

  168. Uhlmann E, Pontes RP, Laghmouchi A (2017) Intelligent pattern recognition of an SLM machine process and sensor data. Procedia. CIRP 62:464–469

    Article  Google Scholar 

  169. Wang D, Cui C, Wu Z (2006) Matching 3D models with global geometric feature map. In: 12th International Multi-Media Modelling Conference, pp. 4–11

  170. Wang B, Liang W, Wang Y, Liang Y (2013) Head Pose Estimation with Combined 2D SIFT and 3D HOG Features. In: 7th International Conference on Image and Graphics, Qingdao, pp. 650–655

  171. Wang Z, Bao W, Lin D, Wang Z (2019) A local feature descriptor based on SIFT for 3D pollen image recognition. IEEE Access 7(1):152658–152666

    Article  Google Scholar 

  172. Weinzaepfel P, Csurka G, Cabon Y, Humenberger M (2019) Visual Localization by Learning Objects-Of-Interest Dense Match Regression. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5627–5636

  173. Wohlkinger W, Vincze M (2012) Shape distributions on voxel surfaces for 3d object classification from depth images. In: IEEE International Conference on Signal and Image Processing Applications, pp. 115–120

  174. Wohlkinger W, Vincze M (2012) Ensemble of shape functions for 3d object classification. In: IEEE International Conference on Robotics and Biomimetics, pp. 2987–2992

  175. Wozniak M (2010) Combining pattern recognition algorithms chances and limits. In: 2nd International Conference on Computer Engineering and Technology, Chengdu, pp. V6–111-V6–115

  176. Xiang Y, Mottaghi R, Savarese S (2014) Beyond pascal: A benchmark for 3d object detection in the wild. In: IEEE winter conference on applications of computer vision, pp. 75–82

  177. Xin Y, Hart E, Mahajan V, Ruvini J-D (2018) Learning the better internal structure of words for sequence labeling. arXiv preprint arXiv: 1810.12443

  178. Xu Y-H, Luo R-H, Min H-Q (2012) Label transfer for joint recognition and segmentation of 3D object. In: International Conference on Machine Learning and Cybernetics, pp. 1188–1192

  179. Yamany SM, Farag AA (2002) Surface signatures: an orientation independent free-form surface representation scheme for objects registration and matching. IEEE Trans Pattern Anal Mach Intell 24(8):1105–1120

    Article  Google Scholar 

  180. Yu Y, Zhang W, Liu W (2007) A New Syntactic Approach to Graphic Symbol Recognition. In: 9th International Conference on Document Analysis and Recognition (ICDAR 2007), pp. 516–520

  181. Zeng Y, Xu X, Shen D, Fang Y, Xiao Z (2016) Traffic sign recognition using kernel extreme learning machines with deep perceptual features. IEEE Trans Intell Transp Syst 18(6):1647–1653

    Google Scholar 

  182. Zhang Q, Li B (2015) Relative hidden Markov models for video-based evaluation of motion skills in surgical training. IEEE Trans Pattern Anal Mach Intell 37(6):1206–1218

    Article  Google Scholar 

  183. Zhang Y-J, Zhang T, Zhu J-B, Yao T-S (2005) Research on DOP- based Chinese parsing. In: International Conference on Machine Learning and Cybernetics, pp. 3840–3845

  184. Zhang X, Liu Y, Gao C, Liu J (2008) An Isomap-Eigenanalysis-Regression Pose Estimation Algorithm of Three-Dimensional Object. In: 2nd International Symposium on Intelligent Information Technology Application, pp. 61–65

  185. Zhao R, Ali H, van der Smagt P (2017) Two-stream RNN/CNN for action recognition in 3D videos. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4260–4267

  186. Zheng Q, Sun J, Zhang L, Chen W, Fan H (2018) An improved 3D shape recognition method based on the panoramic view. In: Mathematical Problems in Engineering, pp. 105–113

  187. Zhong Y (2009) Intrinsic shape signatures: A shape descriptor for 3D object recognition. In: IEEE International Conference on Computer Vision Workshops, pp. 689–696

  188. Zhu X, Ramanan D (2012) Face detection, pose estimation, and landmark localization in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2879–2886

  189. Zhu X, Liu X, Lei Z, Li SZ (2019) Face alignment in full pose range: a 3D Total solution. IEEE Trans Pattern Anal Mach Intell 41(1):78–92

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpa Rani.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Lakhwani, K. & Kumar, S. Three dimensional objects recognition & pattern recognition technique; related challenges: A review. Multimed Tools Appl 81, 17303–17346 (2022). https://doi.org/10.1007/s11042-022-12412-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12412-2

Keywords