Skip to main content
Log in

The proposition of Possibilistic sigmoid features and the Shannon-Hanman transform classifier along with the pervasive learning model for the classification of brain tumor using MRI

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

As part of developing a computer-aided diagnosis system for the early detection/classification of brain tumors, this paper presents an Information set-based sigmoid features and a classifier using MR images. A set of information values constituting an Information set springs forth on fitting a membership function to a set of information source (attribute) values, the sum of which gives the certainty/uncertainty in the attribute values to a class, say, the pixel intensities in an MRI to a disease class. This certainty/uncertainty representation is not attempted in the existing methods, thus failing to produce efficient features. To this end, Hanman-Anirban (HA), Mamta-Hanman (MH), and Possibilistic Renyi entropy functions are employed including the pervasive membership function in the generation of four types of sigmoid features. The pervasive Information set results from the use of pervasive membership function that is a combination of the membership function and non-membership function. Furthermore, the Shannon-Hanman Transform classifier is formulated using the t-norm of error vectors between the training and test feature vectors, and its parameters are learned through the Pervasive learning model. The proposed system comprising features, classifier, and the learning model is tested on two Brain MRI’s datasets. The t-norm based fusion of two features has also been experimented. The Shannon-Hanman Transform classifier along with the Pervasive learning model is found to outperform the other classifiers in the literature with the highest accuracy of 99.51% for the two-class classification with a fusion of two features and 99.09% for the three-class classification with a sigmoid MH feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Achanta SDM, Karthikeyan T, Vinothkanna R (2019) A novel hidden Markov model-based adaptive dynamic time warping (HMDTW) gait analysis for identifying physically challenged persons. Soft Comput 23:8359–8366. https://doi.org/10.1007/s00500-019-04108-x

    Article  Google Scholar 

  2. Achanta SDM, Karthikeyan T, Vinoth KR (2020) A wireless IOT system towards gait detection technique using FSR sensor and wearable IOT devices. Int J Intell Unmanned Syst 8(1):43–54. https://doi.org/10.1108/IJIUS-01-2019-0005

    Article  Google Scholar 

  3. Aggarwal M, Hanmandlu M (2015) Representing uncertainty with information sets. IEEE Trans Fuzzy Syst 24(1):1–15. https://doi.org/10.1109/TFUZZ.2015.2417593

    Article  Google Scholar 

  4. Agrawal R, Sharma M, Singh BK (2018) Performance evaluation of automated brain tumor detection systems with expert delineations and interobserver variability analysis in diseased patients on magnetic resonance imaging. Appl Artif Intell 32(7–8):670–691. https://doi.org/10.1080/08839514.2018.1504500

    Article  Google Scholar 

  5. Ahmmed R, Swakshar AS, Hossain MdF, and Rafiq MdA (2017) Classification of tumors and it stages in brain MRI using support vector machine and artificial neural network. International conference on electrical, computer and communication engineering (ECCE), pp 229–234. IEEE. https://doi.org/10.1109/ECACE.2017.7912909

  6. Alfonse M, Salem A-BM (2016) An automatic classification of brain tumors through MRI using support vector machine. Egy Comp Sci J 40:3

    Google Scholar 

  7. Artzi M, Bressler I, Bashat DB (2019) Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. J Magn Reson Imaging 50(2):519–528. https://doi.org/10.1002/jmri.26643

    Article  Google Scholar 

  8. Asthana P, Madasu Hanmandlu M, Vashisth S (2021) Classification of brain tumor from magnetic resonance images using probabilistic features and possibilistic Hanman–Shannon transform classifier. Int J Imaging Syst Technol 32:1–15. https://doi.org/10.1002/ima.22619

    Article  Google Scholar 

  9. Atanassov KT (1999) Intuitionistic fuzzy sets. In Intuitionistic fuzzy sets. Physica, Heidelberg, 1–137. https://doi.org/10.1007/978-3-7908-1870-3_1

  10. Badža MM, Barjaktarović MČ (2020) Classification of brain tumors from MRI images using a convolutional neural network. Appl Sci 10(6):1999. https://doi.org/10.3390/app10061999

    Article  Google Scholar 

  11. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, Freymann JB, Farahani K, Davatzikos C (2017) Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 4:170117. https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  12. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara RT et al (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge:1811.02629

  13. Bhatia A, Hanmandlu M (2018) Keystroke dynamics based authentication using Possibilistic Renyi entropy features and composite fuzzy classifier. J Mod Phys 9(02):112–129. https://doi.org/10.4236/jmp.2018.92008

    Article  Google Scholar 

  14. Bodapati JD, Shaik NS, Naralasetti V, Mundukur NB (2021) Joint training of two-channel deep neural network for brain tumor classification. Signal, Image Video Process 15(4):753–760

    Article  Google Scholar 

  15. Calvo T, De Baets B, Fodor J (2001) The functional equations of frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst 120(3):385–394. https://doi.org/10.1016/S0165-0114(99)00125-6

    Article  MathSciNet  MATH  Google Scholar 

  16. Cheng J (2017) brain tumor dataset. figshare. Dataset. https://doi.org/10.6084/m9.figshare.1512427.v5

  17. Cheng J, Huang W, Cao S, Yang R, Yang W, Yun Z, Wang Z, Feng Q (2015) Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS One 10(10):e0140381. https://doi.org/10.1371/journal.pone.0140381

    Article  Google Scholar 

  18. Deepak S, Ameer PM (2019) Brain tumor classification using deep CNN features via transfer learning. Comput Biol Med 111:103345. https://doi.org/10.1016/j.compbiomed.2019.103345

    Article  Google Scholar 

  19. Grover J, Hanmandlu M (2018) New evolutionary optimization method based on information sets. Appl Intell 48(10):3394–3410. https://doi.org/10.1007/s10489-018-1154-x

    Article  Google Scholar 

  20. Grover J, Hanmandlu M (2020) Novel competitive-cooperative learning models (cclms) based on higher order information sets. Appl Intell 1–18. https://doi.org/10.1007/s10489-020-01881-3

  21. Gumaei A, Hassan MM, Hassan MR, Alelaiwi A, Fortino G (2019) A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification. IEEE Access 7:36266–36273. https://doi.org/10.1109/ACCESS.2019.2904145

    Article  Google Scholar 

  22. Hanmandlu M, Das A (2011) Content-based image retrieval by information theoretic measure. Def Sci J 61(5):415

    Article  Google Scholar 

  23. Hanmandlu M, Jha D, Sharma R (2003) Color image enhancement by fuzzy intensification. Pattern Recogn Lett 24(1–3):81–87. https://doi.org/10.1016/S0167-8655(02)00191-5

    Article  MATH  Google Scholar 

  24. Hanmandlu M, Bansal M, Vasikarla S (2019) An introduction to information sets with an application to iris based authentication. J Mod Phys 11(1):122–144. https://doi.org/10.4236/jmp.2020.111008

    Article  Google Scholar 

  25. Just M, Rösler HP, Higer HP, Kutzner J, Thelen M (1991) MRI-assisted radiation therapy planning of brain tumors-clinical experiences in 17 patients. Magn Reson Imaging 9(2):173–177. https://doi.org/10.1016/0730-725X(91)90007-9

    Article  Google Scholar 

  26. Kang J, Ullah Z, Gwak J (2021) MRI-based brain tumor classification using Ensemble of Deep Features and Machine Learning Classifiers. Sensors 21(6):2222

    Article  Google Scholar 

  27. Kaplan K, Kaya Y, Kuncan M, Ertunç HM (2020) Brain tumor classification using modified local binary patterns (LBP) feature extraction methods. Med Hypotheses 139:109696. https://doi.org/10.1016/j.mehy.2020.109696

    Article  Google Scholar 

  28. Kazemifar S, McGuire S, Timmerman R, Wardak Z, Nguyen D, Yang P, Jiang S, Owrangi A (2019) MRI-only brain radiotherapy: assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approach. Radiother Oncol 136:56–63. https://doi.org/10.1016/j.radonc.2019.03.026

    Article  Google Scholar 

  29. Khan MA, Lali IU, Rehman A, Ishaq M, Sharif M, Saba T, Zahoor S, Akram T (2019) Brain tumor detection and classification: a framework of marker-based watershed algorithm and multilevel priority features selection. Microsc Res Tech 82(6):909–922. https://doi.org/10.1002/jemt.23238

    Article  Google Scholar 

  30. Kumar RL, Kakarla J, Isunuri BV, Singh M (2021) Multi-class brain tumor classification using residual network and global average pooling. Multimed Tools Appl 80:13429–13438. https://doi.org/10.1007/s11042-020-10335-4

    Article  Google Scholar 

  31. Kumar S, Mankame DP (2020) Optimization driven deep convolution neural network for brain tumor classification. Biocybernetics Biomed Eng 40(3):1190–1204. https://doi.org/10.1016/j.bbe.2020.05.009

    Article  Google Scholar 

  32. Mamta, Hanmandlu M (2014) A new entropy function and a classifier for thermal face recognition. Eng Appl Artif Intell 36:269–286. https://doi.org/10.1016/j.engappai.2014.06.028

    Article  Google Scholar 

  33. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, van Leemput K (2014) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024. https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  34. Menze BH, Van Leemput K, Lashkari D, Riklin-Raviv T, Geremia E, Alberts E, Gruber P et al (2015) A generative probabilistic model and discriminative extensions for brain lesion segmentation—with application to tumor and stroke. IEEE Trans Med Imaging 35(4):933–946. https://doi.org/10.1109/TMI.2015.2502596

    Article  Google Scholar 

  35. Mohan G, Subashini MM (2018) MRI based medical image analysis: survey on brain tumor grade classification. Biomed Signal Process Control 39:139–161. https://doi.org/10.1016/j.bspc.2017.07.007

    Article  Google Scholar 

  36. Mohsen H, El-Dahshan E-SA, El-Horbaty E-SM, Salem A-BM (2018) Classification using deep learning neural networks for brain tumors. Future Comput Inf J 3(1):68–71. https://doi.org/10.1016/j.fcij.2017.12.001

    Article  Google Scholar 

  37. Özyurt F, Sert E, Avcı D (2020) An expert system for brain tumor detection: fuzzy C-means with super resolution and convolutional neural network with extreme learning machine. Med Hypotheses 134:109433. https://doi.org/10.1016/j.mehy.2019.109433

    Article  Google Scholar 

  38. Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251. https://doi.org/10.1109/TMI.2016.2538465

    Article  Google Scholar 

  39. Rao R (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7(1):19–34. https://doi.org/10.5267/j.ijiec.2015.8.004

    Article  Google Scholar 

  40. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  41. Rehman A, Naz S, Razzak MI, Akram F, Imran M (2020) A deep learning-based framework for automatic brain tumors classification using transfer learning. Circuits, Syst Signal Process 39(2):757–775. https://doi.org/10.1007/s00034-019-01246-3

    Article  Google Scholar 

  42. Rényi A (1961) On measures of entropy and information. Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, contributions to the theory of statistics. The regents of the University of California 1

  43. Sauwen N, Acou M, Van Cauter S, Sima DM, Veraart J, Maes F, Uwe H, Achten E, Van Huffel S (2016) Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI. NeuroImage: Clin 12:753–764. https://doi.org/10.1016/j.nicl.2016.09.021

    Article  Google Scholar 

  44. Sayeed F, Hanmandlu M (2017) Properties of information sets and information processing with an application to face recognition. Knowl Inf Syst 52(2):485–507. https://doi.org/10.1007/s10115-016-1017-x

    Article  Google Scholar 

  45. Sharif M, Amin J, Raza M, Yasmin M, Satapathy SC (2020) An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor. Pattern Recogn Lett 129:150–157. https://doi.org/10.1016/j.patrec.2019.11.017

    Article  Google Scholar 

  46. Shree NV, Kumar TNR (2018) Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network. Brain Inf 5(1):23–30. https://doi.org/10.1007/s40708-017-0075-5

    Article  Google Scholar 

  47. Sriramakrishnan P, Kalaiselvi T, Nagaraja P, Mukila K (2018) Tumorous slices classification from MRI brain volumes using block based features extraction and random forest classifier. Int J Comput Sci Eng 6(4):191–196

    Google Scholar 

  48. Subudhi A, Dash M, Sabut S (2020) Automated segmentation and classification of brain stroke using expectation-maximization and random forest classifier. Biocybernet Biomed Eng 40(1):277–289

    Article  Google Scholar 

  49. Sultan HH, Salem NM, Al-Atabany W (2019) Multi-classification of brain tumor images using deep neural network. IEEE Access 7:69215–69225. https://doi.org/10.1109/ACCESS.2019.2919122

    Article  Google Scholar 

  50. Zhuge Y, Ning H, Mathen P, Cheng JY, Krauze AV, Camphausen K, Miller RW (2020) Automated glioma grading on conventional MRI images using deep convolutional neural networks. Med Phys 47:3044–3053. https://doi.org/10.1002/mp.1416

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallavi Asthana.

Ethics declarations

Conflict of interest

‘None Declared’.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asthana, P., Hanmandlu, M. & Vashisth, S. The proposition of Possibilistic sigmoid features and the Shannon-Hanman transform classifier along with the pervasive learning model for the classification of brain tumor using MRI. Multimed Tools Appl 81, 23913–23939 (2022). https://doi.org/10.1007/s11042-022-12482-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12482-2

Keywords

Navigation