Abstract
The abnormal traits and colors of feces typically indicate that the patients are probably suffering from tumor or digestive-system diseases. Thus a fast, accurate and automatic health diagnosis system based on feces is urgently necessary for improving the examination speed and reducing the infection risk. The rarity of the pathological images would deteriorate the accuracy performance of the trained models. In order to alleviate this problem, we employ augmentation and over-sampling to expand the samples of the classes that have few samples in the training batch. In order to achieve an impressive recognition performance and leverage the latent correlation between the traits and colors of feces pathological samples, a multi-task network is developed to recognize colors and traits of the macroscopic feces images. The parameter number of a single multi-task network is generally much smaller than the total parameter number of multiple single-task networks, so the storage cost is reduced. The loss function of the multi-task network is the weighted sum of the losses of the two tasks. In this paper, the weights of the tasks are determined according to their difficulty levels that are measured by the fitted linear functions. The sufficient experiments confirm that the proposed method can yield higher accuracies, and the efficiency is also improved.








Similar content being viewed by others
References
Abdulnabi AH, Wang G, Lu J et al (2015) Multi-task CNN model for attribute prediction. IEEE Trans Multimedia 17(11):1949–1959. https://doi.org/10.1109/TMM.2015.2477680
Alomari YM, Abdullah S, Huda SN et al (2014) Automatic detection and quantification of WBCs and RBCs using iterative structured circle detection algorithm. Comput Math Methods Med 2014:979302. https://doi.org/10.1155/2014/979302
Alsmirat MA, AI-Alem F, AI-Ayyoub M et al (2019) Impact of digital fingerprint image quality on the fingerprint recognition accuracy. Multimed Tools Appl 28:3649–3688. https://doi.org/10.1007/s11042-017-5537-5
Baldoumas G, Peschos D, Tatsis G, Chronopoulos SK, Christofilakis V, Kostarakis P, Varotsos P, Sarlis NV, Skordas ES, Bechlioulis A, Michalis LK, Naka KK (2019) A prototype photoplethysmography electronic device that distinguishes congestive heart failure from healthy individuals by applying natural time analysis. Electronics 8(11):1288. https://doi.org/10.3390/electronics8111288
Bao J, Luo L, Zhang Y, Yang K, Peng C, Peng J, Li R (2021) Half quadratic splitting method combined with convolution neural network for blind image deblurring. Multimed Tools Appl 80:3489–3504. https://doi.org/10.1007/s11042-020-09821-6
Bergquist R, Johansen MV, Utzinger J (2009) Diagnostic dilemmas in helminthology: what tools to use and when. Trends Parasitol 25(4):151–156. https://doi.org/10.1016/j.pt.2009.01.004
Berhe N, Medhin G, Erko B, Smith T, Gedamu S, Bereded D, Moore R, Habte E, Redda A, Gebre-Michael T, Gundersen SG (2004) Variations in helminth faecal egg counts in Kato-Katz thick smears and their implications in assessing infection status with Schistosoma mansoni. Acta Trop 92(3):205–212. https://doi.org/10.1016/j.actatropica.2004.06.011
Black CJ, Ford AC (2020) Global burden of irritable bowel syndrome: trends, predictions and risk factors. Nat Rev Gastroenterol Hepatol 16:473–486. https://doi.org/10.1038/s41575-020-0286-8
Carvalho AOF, Silva AC, Paiva AC et al (2017) Lung-nodule classification based on computed tomography using taxonomic diversity indexes and an SVM. J Signal Process Syst 87(2):179–196. https://doi.org/10.1007/s11265-016-1134-5
Caselli F, Ninno AD, Reale R et al (2020) A Bayesian approach for coincidence resolution in microfluidic impedance cytometry, IEEE trans. Biomed Eng 68:340–349. https://doi.org/10.1109/TBME.2020.2995364
Chang S, Chen X, Duan J et al (2020) A CNN hybrid ring artifact reduction algorithm for CT images. IEEE Trans Plasma Sci. https://doi.org/10.1109/TRPMS.2020.2983391
Charoensuk L, Subrungruang I, Mungthin M, Pinlaor S, Suwannahitatorn P (2019) Comparison of stool examination techniques to detect Opisthorchis viverrini in low intensity infection. Acta Trop 191:13–16. https://doi.org/10.1016/j.actatropica.2018.12.018
Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, Zhou J, Wang G (2017) Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging 36(12):2524–2535. https://doi.org/10.1109/TMI.2017.2715284
Cheng J (2018) Sparse range-constrained learning and its application for medical image grading. IEEE Trans Med Imaging 37(12):2729–2738. https://doi.org/10.1109/TMI.2018.2851607
Chu J, Guo Z, Leng L (2018) Object detection based on multi-layer convolution feature fusion and online hard example mining. IEEE Access 6(1):19959–19967. https://doi.org/10.1109/ACCESS.2018.2815149
Du X, Lin L, Wang X et al (2019) Automatic classification of cells in microscopic fecal images using convolutional neural networks. Biosci Rep 39(4):BSR20182100. https://doi.org/10.1042/BSR20182100
Esposito C, Ficco M, Gupta BB (2021) Blockchain-based authentication and authorization for smart city applications. Inf Process Manag 58(2):102468. https://doi.org/10.1016/j.ipm.2020.102468
Eun H, Kim D, Jung C, Kim C (2018) Single-view 2D CNNs with fully automatic non-nodule categorization for false positive reduction in pulmonary nodule detection. Comput Methods Prog Biomed 165:215–224. https://doi.org/10.1016/j.cmpb.2018.08.012
Ginneken BV, Frangi AF, Staal J et al (2002) Active shape model segmentation with optimal features. IEEE Trans Med Imaging 21(8):924–933. https://doi.org/10.1109/TMI.2002.803121
Gu Y, Shen M, Yang J, Yang GZ (2019) Reliable label-efficient learning for biomedical image recognition. IEEE Trans Biomed Eng 66(9):2423–2432. https://doi.org/10.1109/TBME.2018.2889915
Hachuel D, Jha A, Estrin D et al (2019) Augmenting gastrointestinal health: a deep learning approach to human stool recognition and characterization in macroscopic images. Gastroenterology 156(6):S-937. https://doi.org/10.1016/S0016-5085(19)39304-7
He K, Zhang X, Ren S et al. (2016) Deep residual learning for image recognition, In Proceedings of Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 770–778
Hu C, Wang Y (2020) An efficient CNN model based on object-level attention mechanism for casting defects detection on radiography images. IEEE Trans Ind Electron 67(12):10922–10930. https://doi.org/10.1109/TIE.2019.2962437
Huang L, Jiang H, Li S, Bai Z, Zhang J (2020) Two stage residual CNN for texture denoising and structure enhancement on low dose CT image. Comput Methods Prog Biomed 184:105115. https://doi.org/10.1016/j.cmpb.2019.105115
Jodeiri A, Zoroofi RA, Hiasa Y, Takao M, Sugano N, Sato Y, Otake Y (2020) Fully automatic estimation of pelvic sagittal inclination from anterior-posterior radiography image using deep learning framework. Comput Methods Prog Biomed 184:105282. https://doi.org/10.1016/j.cmpb.2019.105282
Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, McKeown A, Yang G, Wu X, Yan F, Dong J, Prasadha MK, Pei J, Ting MYL, Zhu J, Li C, Hewett S, Dong J, Ziyar I, … Zhang K (2018) Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5):1122–1131. https://doi.org/10.1016/j.cell.2018.02.010
Kinross JM, Mason SE, Mylonas G, Darzi A (2020) Next-generation robotics in gastrointestinal surgery. Nat Rev Gastroenterol Hepatol 17:430–440. https://doi.org/10.1038/s41575-020-0290-z
Kumar A, Kim J, Lynodon D et al (2016) An ensemble of fine-tuned convolutional neural networks for medical image classification. IEEE J Biomed Health Inform 21(1):31–40. https://doi.org/10.1109/JBHI.2016.2635663
Leng L, Teoh ABJ (2015) Alignment-free row-co-occurrence cancelable palmprint fuzzy vault. Pattern Reocgnit 48(7):2290–2303. https://doi.org/10.1016/j.patcog.2015.01.021
Leng L, Li M, Kim C, Bi X (2017) Dual-source discrimination power analysis for multi-instance contactless palmprint recognition. Multimed Tools Appl 76(1):333–354. https://doi.org/10.1007/s11042-015-3058-7
Leng L, Yang Z, Kim K et al (2020) A light-weight practical framework for feces detection and trait recognition. Sensors 20(9):2644. https://doi.org/10.3390/s20092644
Li Q, Li S, Liu X, He Z, Wang T, Xu Y, Guan H, Chen R, Qi S, Wang F (2020) FecalNet: automated detection of visible components in human feces using deep learning. Med Phys 47:4212–4222. https://doi.org/10.1002/mp.14352
Liu M, Zhang J, Adeli E, Shen D (2018) Joint classification and regression via deep multi-task multi-channel learning for Alzheimer's disease diagnosis. IEEE Trans Biomed Eng 66(5):1943–1952. https://doi.org/10.1109/TBME.2018.2869989
Liu J, Chen F, Pan C, Zhu M, Zhang X, Zhang L, Liao H (2018) A cascaded deep convolutional neural network for joint segmentation and genotype prediction of brainstem gliomas. IEEE Trans Biomed Eng 65(9):1943–1952. https://doi.org/10.1109/TBME.2018.2845706
Liu J, Zhang Y, Zhao Q, Lv T, Wu W, Cai N, Quan G, Yang W, Chen Y, Luo L, Shu H, Coatrieux JL (2019) Deep iterative reconstruction estimation (DIRE): approximate iterative reconstruction estimation for low dose CT imaging. Phys Med Biol 64(13):135007. https://doi.org/10.1088/1361-6560/ab18db
Mao R, Qiu Y, He JS, Tan JY, Li XH, Liang J, Shen J, Zhu LR, Chen Y, Iacucci M, Ng SC, Ghosh S, Chen MH (2020) Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. The Lancet Gastroen Hepatol 5(7):667–678. https://doi.org/10.1016/S2468-1253(20)30126-6
Masud M, Gaba GS, Alqahtani S et al (2020) A lightweight and robust secure key establishment for internet of medical thins in COVID-19 patients care. IEEE Internet Things. https://doi.org/10.1109/JIOT.2020.3047662
Nkamgang OT, Tchiotsop D, Fotsin HB, Talla PK, Louis Dorr V, Wolf D (2019) Automatic the clinical stools exam using image processing integrated in an expert system. Inform Med Unlocked 15:100165. https://doi.org/10.1016/j.imu.2019.100165
Pollastri F, Bolelli F, Paredes R, Grana C (2020) Augmenting data with GANs to segment melanoma skin lesions. Multimed Tools Appl 79:15575–15592. https://doi.org/10.1007/s11042-019-7717-y
Qureshi MNI, Oh J, Lee B (2017) 3D-CNN based discrimination of schizophrenia using resting-state fMRI. Artif Intell Med 98:10–17. https://doi.org/10.1016/j.artmed.2019.06.003
Reena MR, Ameer PM (2020) Localization and recognition of leukocytes in peripheral blood: a deep learning approach. Comput Biol Med 126:104034. https://doi.org/10.1016/j.compbiomed.2020.104034
Savelli B, Bria A, Molinara M, Marrocco C, Tortorella F (2020) A multi-context CNN ensemble for small lesion detection. Artif Intell Med 103:101749. https://doi.org/10.1016/j.artmed.2019.101749
Srivastava N, Hinton G, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958
Su A, He X, Zhao X (2021) JPEG steganalysis based on ResNeXt with gauss partial derivative filters. Multimed Tools Appl 80:3349–3366. https://doi.org/10.1007/s11042-020-09350-2
Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J (2016) Convolutional neural networks for medical image analysis: full training or fine tuning. IEEE Trans Med Imaging 35(5):1299–1312. https://doi.org/10.1109/TMI.2016.2535302
Tewari A, Gupta BB (2017) Cryptanalysis of novel ultra-lightweight mutual authentication protocol for IoT devices using RFID tags. J Supercomput 73:1085–1102. https://doi.org/10.1007/s11227-016-1849-x
Tian C, Xu Y, Zuo W (2020) Image denoising using deep CNN with batch renormalization. Neural Netw 121:461–473. https://doi.org/10.1016/j.neunet.2019.08.022
Wang G, Deng Z, Choi KS (2016) Tracking missing data in community health studies using additive LS-SVM classifier. IEEE J Biomed Health Inform 22(2):579–587. https://doi.org/10.1109/JBHI.2016.2634587
Wong WJ, Lai SH (2020) Multi-task CNN for restoring corrupted fingerprint images. Pattern Reocgnit 101:107203. https://doi.org/10.1016/j.patcog.2020.107203
Yang W, Zhong L, Chen Y, Lin L, Lu Z, Liu S, Wu Y, Feng Q, Chen W (2018) Predicting CT images from MRI data through feature matching with learned nonlinear local descriptors. IEEE Trans Med Imaging 37(4):977–987. https://doi.org/10.1109/TMI.2018.2790962
Yang Z, Leng L, Kim BG (2019) StoolNet for color classification of stool medical images. Electronics 8(12):1464. https://doi.org/10.3390/electronics8121464
Yu C, Li J, Li X, Ren X, Gupta BB (2018) Four-image encryption scheme based on quaternion Fresnel transform, chaos and computer generated hologram. Multimed Tools Appl 77:4585–4608. https://doi.org/10.1007/s11042-017-4637-6
Zhang Y, Chu J, Leng L, Miao J (2020) Mask-refined R-CNN: a network for refining object details in instance segmentation. Sensors 20(4):1010. https://doi.org/10.3390/s20041010
Acknowledgements
This research was funded by the National Natural Science Foundation of China (61866028, 61866025, 61663031, 62162045), Key Program Project of Research and Development (Jiangxi Provincial Department of Science and Technology) (20192BBE50073).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yang, Z., Leng, L., Li, M. et al. A computer-aid multi-task light-weight network for macroscopic feces diagnosis. Multimed Tools Appl 81, 15671–15686 (2022). https://doi.org/10.1007/s11042-022-12565-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-022-12565-0