Skip to main content
Log in

Optimal directional texture codes using multiscale bit crossover count planes for palmprint recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The single variance Gabor filters have widely been employed for palmprint structural representation. These filters display inefficient representation due to loss in information detection and false localization of diverse width palmlines. Therefore, the proposed work employs a multiscale filtering based representation, “optimal directional texture codes (ODTC)”. The proposed representation make use of the line structures that go unnoticed with single variance Gabor filters and the multiscale bit crossover count (MBCC) scheme integrates these structural attributes of multiple width. Firstly, the MBCC planes are obtained using bit transition count across the strings which are formed by concatenating the binarized responses of the Gabor filter coefficients at corresponding location binary responses in considered orientations. Thereafter, optimal directional texture plane, i.e., directional representation (DR), is derived by computing dominant directional indices associated with the maximum value of MBCC at each corresponding locations of MBCC planes in different directions. Finally, encoding of the obtained DR results in final ODTC representation. The experimental results on, standard PolyU 2D, multispectral and IITD touchless palmprint databases, demonstrate that the proposed work outperforms several state-of-the-art coding based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Basu M (2002) Gaussian-based edge-detection methods-a survey. IEEE Trans Syst, Man, and Cybern, Part C (Appl Rev) 32(3):252–260

    Article  Google Scholar 

  2. Chen L, Lu G, Zhang D (2004) Effects of different gabor filters parameters on image retrieval by texture. In: Multimedia modelling conference, 2004. proceedings. 10th international. IEEE, pp 273–278

  3. Connie T, Jin A T B, Ong M G K, Ling D N C (2005) An automated palmprint recognition system. Image Vision Comput 23(5):501–515

    Article  Google Scholar 

  4. Dubey P, Kanumuri T (2015) Optimal local direction binary pattern based palmprint recognition. In: 2nd international conference on computing for sustainable global development (INDIACom). IEEE, pp 1979–1984

  5. Dubey P, Kanumuri T, Vyas R (2018) Sequency codes for palmprint recognition. SIViP 12(4):677–684

    Article  Google Scholar 

  6. Fei L, Lu G, Jia W, Wen J, Zhang D (2018) Complete binary representation for 3-D palmprint recognition. IEEE Trans Instrum Meas 67(12):2761–2771

    Article  Google Scholar 

  7. Fei L, Xu Y, Tang W, Zhang D (2016) Double-orientation code and nonlinear matching scheme for palmprint recognition. Pattern Recogn 49:89–101

    Article  Google Scholar 

  8. Fei L, Xu Y, Zhang D (2016) Half-orientation extraction of palmprint features. Pattern Recogn Lett 69:35–41

    Article  Google Scholar 

  9. Fei L, Zhang B, Xu Y, Yan L (2016) Palmprint recognition using neighboring direction indicator. IEEE Trans Hum Mach Syst 46(6):787–798

    Article  Google Scholar 

  10. Genovese A, Piuri V, Plataniotis K N, Scotti F (2019) PalmNet: Gabor-PCA convolutional networks for touchless palmprint recognition. IEEE Trans Inf Forensic Secur 14(12):3160–3174

    Article  Google Scholar 

  11. Guo Z, Zhang D, Zhang L, Zuo W (2009) Palmprint verification using binary orientation co-occurrence vector. Pattern Recogn Lett 30(13):1219–1227

    Article  Google Scholar 

  12. Han C C, Cheng H L, Lin C L, Fan K C (2003) Personal authentication using palm-print features. Pattern Recogn 36(2):371–381

    Article  Google Scholar 

  13. Han W Y, Lee J C (2012) Palm vein recognition using adaptive Gabor filter. Expert Syst Appl 39(18):13225–13234

    Article  Google Scholar 

  14. Hanmandlu M, Gureja A, Jain A (2010) Palm print recognition using local binary pattern operator and support vector machines. In: 2010 international conference on signal and image processing. IEEE, pp 158–162

  15. Hinton G E, Krizhevsky A, Wang S D (2011) Transforming auto-encoders. In: International conference on artificial neural networks. Springer, pp 44–51

  16. Hong Kong PolyU 2D/3D Database (2015). http://www.comp.polyu.edu.hk/~biometrics/2D3DPalmprint/2D3DPalmprint.htm

  17. Huang D S, Jia W, Zhang D (2008) Palmprint verification based on principal lines. Pattern Recogn 41(4):1316–1328

    Article  Google Scholar 

  18. Huh J-H, Seo K (2019) Blockchain-based mobile fingerprint verification and automatic log-in platform for future computing. The J Supercomput 75 (6):3123–3139

    Article  Google Scholar 

  19. IITD Touchless Palmprint Database(version1.0) (2016). http://www.comp.polyu.edu.hk/~csajaykr/IITD/Database_Palm.htm

  20. Jalali A, Mallipeddi R, Lee M (2015) Deformation invariant and contactless palmprint recognition using convolutional neural network. In: HAI 2015 - Proceedings of the 3rd international conference on human-agent interaction, pp 209–212

  21. Jia W, Hu R-X, Lei Y-K, Zhao Y, Gui J (2013) Histogram of oriented lines for palmprint recognition. IEEE Trans Syst Man Cybern: Syst 44 (3):385–395

    Article  Google Scholar 

  22. Jia W, Huang D-S, Tao D, Zhang D (2008) Palmprint identification based on directional representation. In: IEEE International conference on systems, man and cybernetics, 2008. IEEE, pp 1562–1567

  23. Jia W, Zhang B, Lu J, Zhu Y, Zhao Y, Zuo W, Ling H (2017) Palmprint recognition based on complete direction representation. IEEE Trans Image Process 26(9):4483–4498

    Article  MathSciNet  MATH  Google Scholar 

  24. Jing X Y, Zhang D (2004) A face and palmprint recognition approach based on discriminant DCT feature extraction. IEEE Trans Syst, Man, and Cybern, Part B: Cybern 34(6):2405–2415

    Article  Google Scholar 

  25. Khan A, Sohail A, Zahoora U, Qureshi A S (2020) A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev 53 (8):5455–5516

    Article  Google Scholar 

  26. Kong A, Zhang D, Kamel M (2009) A survey of palmprint recognition. Pattern Recogn 42(7):1408–1418

    Article  Google Scholar 

  27. Kong A W-K, Zhang D (2004) Feature-Level Fusion for Effective Palmprint Authentication. Biometric Authentication, Proceedings, pp 761–767

  28. Kong AWK, Zhang D (2004) Competitive coding scheme for palmprint verification. Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. 1:4–7

    Google Scholar 

  29. Kong W K, Zhang D (2002) Palmprint texture analysis based on low-resolution images for personal authentication Proceedings 16th International Conference on Pattern Recognition, vol 3. IEEE, pp 807–810

  30. Kong W K, Zhang D, Li W (2003) Palmprint feature extraction using 2-D Gabor filters. Pattern Recogn 36(10):2339–2347

    Article  Google Scholar 

  31. Krizhevsky A, Sutskever I, Hinton G E (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inform Process Syst 25:1097–1105

    Google Scholar 

  32. Kumar A, Shen H C (2004) Palmprint identification using PalmCodes. Proceedings - Third International Conference on Image and Graphics 2 (2):258–261

    Article  Google Scholar 

  33. Lee T S (1996) Image representation using 2-d gabor wavelets. IEEE Trans Pattern Anal Mach Intell 18(10):959–971

    Article  Google Scholar 

  34. Li F, Leung M K H, Yu X (2004) Palmprint identification using Hausdorff distance. In: Proceedings of international workshop on biomedical circuits and systems, pp S3 3–S5–8

  35. Li G, Kim J (2017) Palmprint recognition with local micro-structure tetra pattern. Pattern Recogn 61:29–46

    Article  Google Scholar 

  36. Lu G, Zhang D, Wang K (2003) Palmprint recognition using eigenpalms features. Pattern Recogn Lett 24(9-10):1463–1467

    Article  MATH  Google Scholar 

  37. Minaee S, Abdolrashidi A, Su H, Bennamoun M, Zhang D (2019) Biometric recognition using deep learning: A survey. arXiv preprint arXiv:1912.00271

  38. Pan X, Ruan Q-Q (2008) Palmprint recognition with improved two-dimensional locality preserving projections. Image Vis Comput 26(9):1261–1268

    Article  Google Scholar 

  39. Rotinwa-Akinbile M O, Aibinu AM, Salami M J E (2011) Palmprint recognition using principal lines characterization. In: First international conference on informatics and computational intelligence, pp 278–282

  40. Shu W, Zhang D (1998) Palmprint verification: an implementation of biometric technology. In: Proceedings Fourteenth international conference on pattern recognition, vol 1. IEEE, pp 219–221

  41. Su R, Chen W, Wei L, Li X, Jin Q, Tao W (2018) Encoded texture features to characterize bone radiograph images. Proceedings - International Conference on Pattern Recognition 2018-August:3856–3861

    Google Scholar 

  42. Sun Z, Tan T, Wang Y, Li S Z (2005) Ordinal palmprint represention for personal identification [represention read representation]. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), vol 1. IEEE, pp 279–284

  43. Sundararajan K, Woodard D L (2018) Deep learning for biometrics: A survey. ACM Comput Surv 51(3)

  44. Tabejamaat M, Mousavi A (2017) Concavity-orientation coding for palmprint recognition. Mutimed Tools Appl 76(7):9387–9403

    Article  Google Scholar 

  45. Tamrakar D, Khanna P (2015) Palmprint verification with xor-sum code. SIViP 9(3):535–542

    Article  Google Scholar 

  46. Wang J-G, Yau W-Y, Suwandy A, Sung E (2008) Person recognition by fusing palmprint and palm vein images based on laplacianpalm representation. Pattern Recogn 41(5):1514–1527

    Article  MATH  Google Scholar 

  47. Wang S, Xu Y (2008) A new palmprint identification algorithm based on gabor filter and moment invariant. In: 2008 IEEE conference on cybernetics and intelligent systems. IEEE, pp 491–496

  48. Wu X, Zhang D, Wang K (2003) Fisherpalms based palmprint recognition. Pattern Recogn Lett 24(15):2829–2838

    Article  Google Scholar 

  49. Wu X, Zhang D, Wang K, Huang B (2004) Palmprint classification using principal lines. Pattern Recogn 37(10):1987–1998

    Article  MATH  Google Scholar 

  50. Xu Y, Fei L, Wen J, Zhang D (2016) Discriminative and robust competitive code for palmprint recognition. IEEE Trans Syst, Man, and Cybern: Syst PP(99):1–10

    Google Scholar 

  51. Younesi A, Amirani M C (2017) Gabor filter and texture based features for palmprint recognition. Procedia Computer Science 108:2488–2495

    Article  Google Scholar 

  52. Young S R, Rose D C, Karnowski T P, Lim S-H, Patton R M (2015) Optimizing deep learning hyper-parameters through an evolutionary algorithm. In: Mlhpc’15 proceedings of the workshop on machine learning in high-performance computing environments, article no. 4, Tech. rep., Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States). Oak Ridge

  53. Zhang D, Kong W K, You J, Wong M (2003) Online palmprint identification. IEEE Trans Pattern Anal Mach Intell 25(9):1041–1050

    Article  Google Scholar 

  54. Zhang D, Zuo W, Yue F (2012) A comparative study of palmprint recognition algorithms. ACM Comput Surv (CSUR) 44(1):1–37

    Article  Google Scholar 

  55. Zhang L, Zhang D (2004) Characterization of palmprints by wavelet signatures via directional context modeling. IEEE Trans Syst, Man, and Cybern, Part B: Cybern 34(3):1335–1347

    Article  Google Scholar 

  56. Zhang L, Li H (2012) Encoding local image patterns using riesz transforms: With applications to palmprint and finger-knuckle-print recognition. Image Vis Comput 30(12):1043–1051

    Article  MathSciNet  Google Scholar 

  57. Zhang L, Li H, Niu J (2012) Fragile bits in palmprint recognition. IEEE Sig Process Lett 19(10):663–666

    Article  Google Scholar 

  58. Zhao D, Pan X, Luo X, Gao X (2015) Palmprint recognition based on deep learning. IET Conf Publ 2015(CP681):214–216

    Google Scholar 

  59. Zhang D, Guo Z, Lu G, Zhang L, Zuo W (2010) An Online System of Multispectral Palmprint Verification. IEEE Trans Instrument Measurement 59(2):480–490

    Article  Google Scholar 

  60. Zhong D, Du X, Zhong K (2019) Decade progress of palmprint recognition: a brief survey. Neurocomputing 328:16–28

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Dubey.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix:: Gabor filters

Appendix:: Gabor filters

The Gabor filters can be defined as (8):

$$ \begin{array}{ll} G(x,y,\sigma ,u,\theta ) &= \frac{1}{{2\pi {\sigma^{2}}}}\exp \left( {\frac{{ - \left( {\left[ {\begin{array}{*{20}{c}} x&y \end{array}} \right] \cdot {{\left[ {\begin{array}{*{20}{c}} x&y \end{array}} \right]}^{T}}} \right)}}{{2{\sigma^{2}}}}} \right)\\ &\bullet \exp \left( {2\pi iu\left[ {\begin{array}{*{20}{c}} x&{ y} \end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}} {\cos \theta }\\ {\sin \theta }, \end{array}} \right]} \right) \end{array} $$
(8)

here, “⋅” represents matrix multiplication, \(i=\sqrt {-1}\); u represents complex sinusoidal grating frequency;, σ is the variance of 2-D Gaussian envelope; and orientation of sinusoidal gratings is represented by 𝜃 within the range bounded to [0 180]. The particular orientation, 𝜃l, belongs to this set is obtained as:

$$ {\theta_{l} = (l - 1) \times \frac{{180}}{N}} , l = 1, 2, 3 , {\ldots} N $$
(9)

Thus, Gabor filter, \(G_{{\sigma _{j}}}^{{\theta _{l}}}\) with multi-scale, σj and multi orientation, 𝜃l, can be designed as:

$$ \begin{array}{ll} G_{{\sigma_{j}}}^{{\theta_{l}}}(x,y,{\sigma_{j}},u,{\theta_{l}}) &= \frac{1}{{2\pi {\sigma_{j}^{2}}}}\exp \left( {\frac{{ - \left( {\left[ {\begin{array}{*{20}{c}} x&y \end{array}} \right]) \cdot {{\left[ {\begin{array}{*{20}{c}} x&y \end{array}} \right]}^{T}}} \right)}}{{2{\sigma_{j}^{2}}}}} \right)\\ &\bullet \exp \left( {2\pi iu\left[ {\begin{array}{*{20}{c}} x&y \end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}} {\cos {\theta_{l}}}\\ {\sin {\theta_{l}}} \end{array}} \right]} \right) \end{array} $$
(10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, P., Kanumuri, T. & Vyas, R. Optimal directional texture codes using multiscale bit crossover count planes for palmprint recognition. Multimed Tools Appl 81, 20291–20310 (2022). https://doi.org/10.1007/s11042-022-12580-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12580-1

Keywords

Navigation