Skip to main content
Log in

4D Hyperchaotic map and DNA encoding combined image encryption for secure communication

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The usage of digital health data such as documents, images and videos has increased drastically in recent years, making them more prone to sophisticated cyber threats. Here arises a great requirement of information security since this digital data is sent through the public network. Many encryption algorithms were utilised to protect digital data from typical attacks. There exist several conventional encryption algorithms such as Data Encryption Standard (DES), Advanced Encryption Standard (AES), International DataEncryption Algorithm (IDEA), etc., which are used for encryption purposes. Still, they take longer execution time, provides poor security and are more vulnerable to several cyber-attacks. The proposed work provides a cryptosystem based on 4D Lorenz type hyper-chaos and Deoxyribonucleic acid (DNA) encoding mechanism to overcome earlier method limitations. The approximated and detailed coefficients of the input image is obtained by applying Integer Wavelet Transform (IWT). Then, the pixels of the Low-Low (LL) band get permuted using a Logistic map. The 4D hyper-chaotic system creates a pseudo-random chaotic sequence using the initial values, quantised to a keystream. The final data gets encoded using the DNA encoding rule. For enhanced diffusion, DNA-XOR is performed to produce the final cipher image. Various performance metrics have been analysed for several images, and the experimental results show that the proposed scheme is effective against brute force attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Aashiq Banu S, Amirtharajan R (2020) Tri-level scrambling and enhanced diffusion for DICOM image cipher- DNA and chaotic fused approach. Multimed Tools Appl 79:28807–28824. https://doi.org/10.1007/s11042-020-09501-5

    Article  Google Scholar 

  2. Aashiq Banu S, Amirtharajan R (2021) Bio-inspired cryptosystem on the reciprocal domain: DNA strands mutate to secure health data. Front Inform Technol Electron Eng 22:940–956. https://doi.org/10.1631/FITEE.2000071

    Article  Google Scholar 

  3. Abdulla AA, Sellahewa H, Jassim SA (2014) Stego quality enhancement by message size reduction and fibonacci bit-plane mapping. In: Chen L, Mitchell C (eds) Security standardisation research. SSR 2014. Lecture notes in computer science, vol 8893. Springer, Cham. https://doi.org/10.1007/978-3-319-14054-4_10

    Chapter  Google Scholar 

  4. Abdulla AA, Sellahewa H, Jassim SA (2019) Improving embedding efficiency for digital steganography by exploiting similarities between secret and cover images. Multimed Tools Appl 78:17799–17823. https://doi.org/10.1007/s11042-019-7166-7

    Article  Google Scholar 

  5. Annaby M, Rushdi M, Nehary E (2018) Color image encryption using random transforms, phase retrieval, chaotic maps, and diffusion. Opt Lasers Eng 103:9–23

    Article  Google Scholar 

  6. Banu SA, Amirtharajan R (2020) Robust medical image encryption in dual domain: chaos-DNA-IWTcombinedapproach. Med Biol Eng Comput 58:1445–1458. https://doi.org/10.1007/s11517-020-02178-w

    Article  Google Scholar 

  7. Belazi A, Talha M, Kharbechand S, Xiang W (2019) Novel medical image encryption scheme based on chaos and DNA encoding. IEEE Access 7:36667–36681. https://doi.org/10.1109/ACCESS.2019.2906292

    Article  Google Scholar 

  8. Chen J (2003) ADNA-based, biomolecular cryptography design,” Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS’03., Bangkok, pp. III-III

  9. Cox JP (2001) Long-term data storage in DNA. Trends Biotechnol 19(7):247–250

    Article  Google Scholar 

  10. Dagadu JC, Li JP, Aboagye EO (2019) Medical image encryption based on hybrid chaotic DNA diffusion. Wirel Pers Commun 108:591–612. https://doi.org/10.1007/s11277-019-06420-z

    Article  Google Scholar 

  11. Dua M, Wesanekar A, Gupta V, Bhola M, Dua S (2019) Differential evolution optimisation of intertwining logistic map-DNA based image encryption technique. J Ambient Intell Hum Computig 11(9):3771–3786. https://doi.org/10.1007/s12652-019-01580-z

    Article  Google Scholar 

  12. Guan M, Yang X, Hu W (2019) Chaotic image encryption algorithm using frequency-domain DNA encoding. IET Image Process 13:1535–1539. https://doi.org/10.1049/iet-ipr.2019.0051

    Article  Google Scholar 

  13. Hamad S (2014) A novel implementation of an extended 8×8 play fair cipher using interweaving on DNA- encoded data. Int J Elect Comput Eng 4(1):93–100

    Google Scholar 

  14. Hamad S, Elhadad A, Khalifa A (2018) DNA watermarking using codon post fix technique. IEEE/ACM Trans Comput Biol Bioinf 15(5):1605–1610

    Google Scholar 

  15. Hua Z, Zhou Y, Pun C-M, Chen CLP (2015) 2D sine logistic modulation map for imageencryption. Inf Sci 297:80–94. https://doi.org/10.1016/j.ins.2014.11.018

    Article  Google Scholar 

  16. Jolfaei A, Wu X-W, Muthukkumarasamy V (2016) On the security of permutation-only image encryption schemes. IEEE Trans Inf Forensics Secur 11(2):235–246

    Article  Google Scholar 

  17. Li M, Xu M, Luo J, Fan H (2019) Cryptanalysis of an image encryption using 2D Henon-sine map and DNA approach. IEEE Access 7:63336–63345. https://doi.org/10.1109/ACCESS.2019.2916402

    Article  Google Scholar 

  18. Li P, Xu J, Mou J et al (2019) Fractional order 4D Hyperchaotic memristivesystem and application in colorimageencryption. J Image Video Proc 2019:22. https://doi.org/10.1186/s13640-018-0402-7

    Article  Google Scholar 

  19. Li T, Shi J, Li X, Wu J, Pan F (2019) Image Encryption based on pixel-level diffusion with dynamic filtering and DNA-level permutation with 3D latin cubes. Entropy 21(3):319. https://doi.org/10.3390/e21030319

    Article  MathSciNet  Google Scholar 

  20. Liu H, Zhao B, Huang L (2019) A remote-sensing image encryption scheme using DNA bases probability and two-dimensional logistic map. IEEE Access 7:65450–65459. https://doi.org/10.1109/ACCESS.2019.2917498

    Article  Google Scholar 

  21. Z Liu, C Wu, J Wang, Y Hu,” A color image encryption using dynamic DNA and 4-D memristive hyper-chaos”, IEEE Access, 7, 2019 78367-78378.

  22. Luo Y, Zhou R, Liu J, Qiu S, Cao Y (2018) An efficient and self-adapting colour-image encryption algorithm based on chaos and inter-actions among multiple layers. Multimed Tools Appl 77(20):26191–26217

    Article  Google Scholar 

  23. Malathi P, Manoaj M, Manoj R, Raghavan V, Vinodhini RE (2017) Highly improved DNAbasedsteganography. Procedia Comput Sci 115:651–659

    Article  Google Scholar 

  24. Mamta B, Gupta B, Li K-C, Leung VCM, Psannis KE, Yamaguchi S (2021) Blockchain-assisted secure fine-grained searchable encryption for a cloud-based healthcare cyber-physical system. IEEE/CAA J Autom Sin. https://doi.org/10.1109/JAS.2021.1004003

  25. Mousa H, Moustafa K, Abdel-Wahed W, Hadhoud M (2011) Data hiding based on contrast mapping using DNA medium. Int Arab J Inf Technol 8(2):147–154

    Google Scholar 

  26. Muthu JS, Murali P, Chunyan H (2020) An image encryption algorithm based on modified logisticchaoticmap. Optik 207:163843,ISSN0030-4026. https://doi.org/10.1016/j.ijleo.2019.163843

    Article  Google Scholar 

  27. Naveen C, Gupta TVS, Satpute VR, Gandhi AS (2015) A simple and efficient approach formedical image security using chaos on EZW. 2015 Eighth International Conference on Advances in PatternRecognition(ICAPR)

  28. Patro KAK, Acharya B (2019) An efficient colour image encryption schemebased on 1-D chaotic maps. J Inf Secur Appl 46:23–41. https://doi.org/10.1016/j.jisa.2019.02.006

    Article  Google Scholar 

  29. Preishuber M, Hutter T, Katzenbeisser S, Uhl A (2018) Depreciating motivation and empirical security analysis of chaos-based image and video encryption. IEEE Trans Inf Forensics Security 13(9):2137–2150

    Article  Google Scholar 

  30. Ravichandran D et al (2016) Chaos based crossover and mutation for securing DICOM image. Comput Biol Med 72:170–184. https://doi.org/10.1016/j.compbiomed.2016.03.020

    Article  Google Scholar 

  31. Rusia M, Makwana RH (2014) Review on DNA based encryption algorithm for text and imagedata. Int J Eng Res Technol 3(1):3182–3186

    Google Scholar 

  32. Samiullah M et al (2020) An image encryption scheme based on DNA computing and multiple chaotic systems. IEEE Access 8:25650–25663. https://doi.org/10.1109/ACCESS.2020.2970981

    Article  Google Scholar 

  33. Shivhare R, Shrivastava R, Gupta C (2018) An enhanced image encryption technique using DES Algorithm with Random Image over lapping and RandomkeyGeneration. 2018 International Conferenceon Advanced Computation and Telecommunication (ICACAT), pp. 1–9. https://doi.org/10.1109/ICACAT.2018.8933591.

  34. Suri S, Vijay R (2020) A Pareto-optimal evolutionary approach of image encryption using coupled maplattice and DNA. Neural Comput Applic 32:11859–11873. https://doi.org/10.1007/s00521-019-04668-x

    Article  Google Scholar 

  35. Suryadi M, Satria Y, Fauzi M (2018) Implementation of digital image encryption algorithm using logistic function and DNA encoding. J Phys Conf Ser 974:Art. no. 012028

    Google Scholar 

  36. Tanaka K, Okamoto A et al (2005) Public-keysystemusing DNA asaone-way function for key distribution. Biosystems 81(1):25–29

    Article  Google Scholar 

  37. Tornea O (2013) Contributionsto DNA cryptography: applications to text and image secure transmission. Université Nice Sophia Antipolis; Technical University of Cluj-Napoca (Roumanie)

  38. Wang X, Gao S, Yu L, Sun Y, Sun H (2019) Chaotic image encryption algorithm based on bit-combination scrambling in decimal system and dynamic diffusion. IEEE Access 7:103662–103677. https://doi.org/10.1109/ACCESS.2019.2931052

    Article  Google Scholar 

  39. Wu Y, Noonan JP, Agaian S (2011) NPCR and UACI randomness tests for image encryption. Cyber J: Multidiscip J Sin Sci Technol J Sel Area Telecommun (JSAT) 1(2):31–33

    Google Scholar 

  40. Wu X, Kurths J, Kan H (2018) Arobust and lossless DNA encryp-tion scheme for colorimages. Multimed Tools Appl 77(10):12349–12376

    Article  Google Scholar 

  41. Xu Q, Sun K, Cao C, Zhu C (2019) A fast image encryption algorithm based oncompressive sensing and hyperchaotic map. Opt Lasers Eng 121:203–214, ISSN0143–8166. https://doi.org/10.1016/j.optlaseng.2019.04.011

    Article  Google Scholar 

  42. Yasser I, Khalifa F, Mohamed MA, Samrah AS (2020, 2020) A new image encryption scheme based on hybrid chaotic maps. Complexity:Article ID 9597619, 23 pages. https://doi.org/10.1155/2020/9597619

  43. Zhang Q, Ding Q (2015) Digital image encryption based on advanced encryption standard (AES). 2015 Fifth International Conferenceon Instrumentation and Measurement, Computer, Communicationand Control (IMCCC), pp. 1218–1221. https://doi.org/10.1109/IMCCC.2015.261.

  44. Zhang X, Wang X (2018) Multiple-image encryption algorithm based on the 3D permutation model and chaotic system. Symmetry 10(11):660

    Article  Google Scholar 

  45. Zhang X, Jin X et al (2009) Application of a novel IWO to the design of encoding sequences for DNA computing. Comput Math Appl 57(11–12):2001–2008

    Article  Google Scholar 

  46. Zhang TT, Yan SJ, Gu CY, Ren L, Liao KX (2018) Research on image encryption based on dna sequence and chaos theory. Proc 2nd Int Conf Mach Vis Inf Technol(CMVIT), vol. 1004, pp. 149–154

  47. Zheng Q, Wang X, Khurram Khan M, Zhang W, Gupta BB, Guo W (2018) A lightweight authenticated encryption scheme based on chaotic SCML for railway cloud service. IEEE Access 6:711–722. https://doi.org/10.1109/ACCESS.2017.2775038

    Article  Google Scholar 

  48. Zhu C, Sun K (2018) Cryptanalyzing and improving a novel color image encryption algorithm using RT-enhanced chaotic tent maps. IEEE Access 6:18759–18770. https://doi.org/10.1109/ACCESS.2018.2817600

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Amirtharajan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arthi, G., Thanikaiselvan, V. & Amirtharajan, R. 4D Hyperchaotic map and DNA encoding combined image encryption for secure communication. Multimed Tools Appl 81, 15859–15878 (2022). https://doi.org/10.1007/s11042-022-12598-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12598-5

Keywords

Navigation