Skip to main content
Log in

An image block encryption algorithm based on hyperchaotic system and DNA encoding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents an innovative image block encryption algorithm adopting fractional Fourier transform (FRFT), hyperchaotic system, improved logistic map and Deoxyribonucleic Acid (DNA) encoding. Initially, the plaintext image is performed FRFT twice, and the processed image is decomposed into three components according to the RGB channels. Then, three components and the matrix created by logistic map are divided into several sub-blocks. The sub-blocks are performed DNA encoding. Furthermore, perform DNA operation between the three components sub-blocks and the corresponding sub-blocks of the logistic matrix, and then decode and merge the sub-blocks into one image. Finally, chaotic sequences are used to scramble the merged images to gain the ciphertext image. The DNA encoding, decoding and operation rules of each sub-block are randomly determined by the chaotic sequences, which can effectively improve the complexity of DNA encoding, decoding and calculation rules. The algorithm possesses huge key space, high key sensitivity, extreme complexity and security demonstrated from simulation results and security performance analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akhava A, Samsudi A, Akhshani A (2017) Cryptanalysis of an image encryption algorithm based on DNA encoding. Opt Laser Technol 95:94–99. https://doi.org/10.1016/j.optlastec.2017.04.022

    Article  Google Scholar 

  2. Anandkumar R, Kalpana R (2019) Designing a fast image encryption scheme using fractal function and 3D Henon map. J Inf Secur Appl 49:102390. https://doi.org/10.1016/j.jisa.2019.102390

    Article  Google Scholar 

  3. Brahim AH, Pacha AA, Said NH (2020) Image encryption based on compressive sensing and chaos systems. Opt Laser Technol 132:106489. https://doi.org/10.1016/j.optlastec.2020.106489

    Article  Google Scholar 

  4. Chai XL, Fu XL, Gan ZH, Lu Y, Chen Y (2019) A color image cryptosystem based on dynamic DNA encryption and chaos. Signal Process 155:44–62. https://doi.org/10.1016/j.sigpro.2018.09.029

    Article  Google Scholar 

  5. Chai XL, Bi JQ, Gan ZH, Liu X, Zhang Y, Chen Y (2020) Color image compression and encryption scheme based on compressive sensing and double random encryption strategy. Signal Process 176:107684. https://doi.org/10.1016/j.sigpro.2020.107684

    Article  Google Scholar 

  6. Chai XL, Wu HY, Gan ZH, Han D, Zhang Y, Chen Y (2021) An efficient approach for encrypting double color images into a visually meaningful cipher image using 2D compressive sensing. Inf Sci 556:305–340. https://doi.org/10.1016/j.ins.2020.10.007

    Article  MathSciNet  Google Scholar 

  7. Chai XL, Zhi XC, Gan ZH, Zhang Y, Chen Y, Fu J (2021) Combining improved genetic algorithm and matrix semi-tensor product (STP) in color image encryption. Signal Process 183:108041. https://doi.org/10.1016/j.sigpro.2021.108041

    Article  Google Scholar 

  8. Enayatifar R, Guimarães FG, Siarry P (2019) Index-based permutation-diffusion in multiple-image encryption using DNA sequence. Opt Lasers Eng 115:131–140. https://doi.org/10.1016/j.optlaseng.2018.11.017

    Article  Google Scholar 

  9. Fang J, Jiang MH, An XY et al (2021) A novel laser complex chaotic system and its point multiplication function projection synchronization. Complex Syst Complex Sci 18(1):30–37. https://doi.org/10.13306/j.1672-3813.2021.01.005

    Article  Google Scholar 

  10. Gong LH, Deng CZ, Pan SM, Zhou N (2018) Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform. Opt Laser Technol 103:48–58. https://doi.org/10.1016/j.optlastec.2018.01.007

    Article  Google Scholar 

  11. Head T, Rozenberg G, Bladergroen RS, Breek CKD, Lommerse PHM, Spaink HP (2000) Computing with DNA by operating on plasmids. BioSystems 57(2):87–93. https://doi.org/10.1016/S0303-2647(00)00091-5

    Article  Google Scholar 

  12. Huan X, Sun TT, Li YX et al (2015) A color image encryption algorithm based on a fractional-order Hyperchaotic system. Entropy 17(1):28–38. https://doi.org/10.3390/e17010028

    Article  Google Scholar 

  13. Malik DS, Shah T (2020) Color multiple image encryption scheme based on 3D-chaotic maps. Math Comput Simulat 178(12):646–666. https://doi.org/10.1016/j.matcom.2020.07.007

    Article  MathSciNet  MATH  Google Scholar 

  14. Mondal B, Singh S, Kumar P (2019) A secure image encryption scheme based on cellular automata and chaotic skew tent map. J Inf Secur Appl 45:117–130. https://doi.org/10.1016/j.jisa.2019.01.010

    Article  Google Scholar 

  15. Özkaynak F (2018) Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn 92(5):305–301. https://doi.org/10.1007/s11071-018-4056-x

    Article  Google Scholar 

  16. Pak C, Huang LL (2017) A new color image encryption using combination of the 1D chaotic map. Signal Process 138:129–137. https://doi.org/10.1016/j.sigpro.2017.03.011

    Article  Google Scholar 

  17. Peng ZP, Wang CH, Lin Y et al (2014) A novel four-dimensional multi-wing hyper-chaotic attractor and its application in image encryption. Acta Phys Sin 63(24):240506. https://doi.org/10.7498/aps.63.240506

    Article  Google Scholar 

  18. Silva-García VM, Flores-Carapia R, Rentería-Márquez C, Luna-Benoso B, Aldape-Pérez M (2018) Substitution box generation using Chaos: An image encryption application. Appl Math Comput 332:123–135. https://doi.org/10.1016/j.amc.2018.03.019

    Article  MathSciNet  MATH  Google Scholar 

  19. Sui LS, Zhang X, Huang CT et al (2019) Silhouette-free interference-based multiple-image encryption using cascaded fractional Fourier transforms. Opt Lasers Eng 113(3):29–37. https://doi.org/10.1016/j.optlaseng.2018.10.002

    Article  Google Scholar 

  20. Tang HQ, Sun QF, Yang XL et al (2018) A network coding and DES based dynamic encryption scheme for moving target defense. IEEE Access 6:26059–26068. https://doi.org/10.1109/ACCESS.2018.2832854

    Article  Google Scholar 

  21. Tong XJ, Cui MG (2010) Feedback image encryption algorithm with compound chaotic stream cipher based on perturbation. Sci China Inform Sci 53(1):191–202

    Article  MathSciNet  Google Scholar 

  22. Wu JH, Liao XF, Yang B (2018) Image encryption using 2D Hénon-sine map and DNA approach. Signal Process 153:11–23. https://doi.org/10.1016/j.sigpro.2018.06.008

    Article  Google Scholar 

  23. Yan XP, Wang XY, Xian YJ (2021) Chaotic image encryption algorithm based on arithmetic sequence scrambling model and DNA encoding operation. Multimed Tools Appl 80:10949–10983. https://doi.org/10.1007/s11042-020-10218-8

    Article  Google Scholar 

  24. Yang Y, Wang LD, Duan SK, Luo L (2021) Dynamical analysis and image encryption application of a novel memristive hyperchaotic system. Opt Laser Technol 133:106553. https://doi.org/10.1016/j.optlastec.2020.106553

    Article  Google Scholar 

  25. Yu SS, Zhou NR, Gong LH, Nie Z (2020) Optical image encryption algorithm based on phase-truncated short-time fractional Fourier transform and hyper-chaotic system. Opt Lasers Eng 124:105816. https://doi.org/10.1016/j.optlaseng.2019.105816

    Article  Google Scholar 

  26. Zhang YB, Zhang L, Zhong Z, Yu L, Shan M, Zhao Y (2021) Hyperchaotic image encryption using phase-truncated fractional Fourier transform and DNA-level operation. Opt Lasers Eng 143(7):106626. https://doi.org/10.1016/j.optlaseng.2021.106626

    Article  Google Scholar 

  27. Zhao SM, Yu XD, Wang L, Li W, Zheng B (2020) Secure optical encryption based on ghost imaging with fractional Fourier transform. Opt Commun 474(5):126086

    Article  Google Scholar 

  28. Zhou MJ, Wang CH (2020) A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion between blocks. Signal Process 171:107484. https://doi.org/10.1016/j.sigpro.2020.107484

    Article  Google Scholar 

  29. Zhou YC, Hua ZY, Pun CM et al (2015) Cascade chaotic system with applications. IEEE Trans Cybern 45(9):2001–2012. https://doi.org/10.1109/TCYB.2014.2363168

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant no. 61775198, 62076222, 61703313), Science and technology project of Henan Province(Grant no. 222102210059, 222102210266) and Science and Technology Innovation Team Project of Henan Province (Grant no. 19IRTSTHN013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Fang.

Ethics declarations

Conflict of interest

The authors declare there is no conflicts of interest regarding the publication of this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Jiang, M., Yin, N. et al. An image block encryption algorithm based on hyperchaotic system and DNA encoding. Multimed Tools Appl 81, 17245–17262 (2022). https://doi.org/10.1007/s11042-022-12604-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12604-w

Keywords

Navigation