Skip to main content

Advertisement

Log in

Review: Single attribute and multi attribute facial gender and age estimation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Facial age and gender recognition have vital applications as consumer profile prediction, social media advertisement, human-computer interaction, image retrieval system, demographic profiling, customized advertisement systems, security and surveillance. This paper presents a study on Single Attribute (Attribute: either Gender or Age) and Multi-Attribute (both Gender and Age) prediction model. We present a review for facial age estimation and gender classification methods based on conventional as well as deep learning approaches developed so far with analysis of their pros, cons and insights for future research. Moreover, this study also enlists the databases used for benchmarking results with their properties for both constrained and unconstrained environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. (2017) Japanese smokers to face age test. http://news.bbc.co.uk/2/hi/asia-pacific/7395910.stm

  2. Abbas H, Hicks Y, Marshall D, Zhurov AI, Richmond S (2018) A 3d morphometric perspective for facial gender analysis and classification using geodesic path curvature features. Computational Visual Media 4(1):17–32

    Article  Google Scholar 

  3. Afifi M, Abdelhamed A (2019) Afif4: Deep gender classification based on adaboost-based fusion of isolated facial features and foggy faces. J Vis Commun Image Represent 62:77–86

    Article  Google Scholar 

  4. Agbo-Ajala O, Viriri S (2020) Deeply learned classifiers for age and gender predictions of unfiltered faces. The Scientific World Journal 2020

  5. Agbo-Ajala O, Viriri S (2020) A lightweight convolutional neural network for real and apparent age estimation in unconstrained face images. IEEE Access 8:162800–162808

    Article  Google Scholar 

  6. Alamri T, Hussain M, Aboalsamh H, Muhammad G, Bebis G, Mirza A M (2013) Category specific face recognition based on gender. In: 2013 international conference on information science and applications (ICISA). IEEE, pp 1–4

  7. Alexandre LA (2010) Gender recognition: A multiscale decision fusion approach. Pattern Recognition Letters 31(11):1422–1427

    Article  Google Scholar 

  8. Antipov G, Berrani S-A, Dugelay J-L (2016) Minimalistic cnn-based ensemble model for gender prediction from face images. Pattern Recognition Letters 70:59–65

    Article  Google Scholar 

  9. Aslam A, Hussain B, Cetin AE, Umar AI, Ansari R (2018) Gender classification based on isolated facial features and foggy faces using jointly trained deep convolutional neural network. Journal of Electronic Imaging 27(5):053023

    Article  Google Scholar 

  10. Baluja S, Rowley HA (2007) Boosting sex identification performance. Int J Comput Vis 71(1):111–119

    Article  Google Scholar 

  11. Bissoon T, Viriri S (2013) Gender classification using face recognition. In: 2013 international conference on adaptive science and technology. IEEE, pp 1–4

  12. Chang K-Y, Chen C-S (2015) A learning framework for age rank estimation based on face images with scattering transform. IEEE Trans Image Process 24 (3):785–798

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang K-Y, Chen C-S, Hung Y-P (2011) Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: CVPR 2011. IEEE, pp 585–592

  14. Chao W-L, Liu J-Z, Ding J-J (2013) Facial age estimation based on label-sensitive learning and age-oriented regression. Pattern Recogn 46 (3):628–641

    Article  Google Scholar 

  15. Chen B-C, Chen C-S, Hsu W H (2015) Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset. IEEE Transactions on Multimedia 17(6):804–815

    Article  Google Scholar 

  16. Chen S, Zhang C, Dong M, Le J, Rao M (2017) Using ranking-cnn for age estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5183–5192

  17. Chikkala R, Edara S, Bhima P (2019) Human facial image age group classification based on third order four pixel pattern (tofp) of wavelet image. Int Arab J Inf Technol 16(1):30–40

    Google Scholar 

  18. Cirne MVM, Pedrini H (2017) Gender recognition from face images using a geometric descriptor. In: 2017 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, pp 2006–2011

  19. Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681–685

    Article  Google Scholar 

  20. Cottrell G W, Metcalfe J (1991) Empath: Face, emotion, and gender recognition using holons. In: Advances in neural information processing systems, pp 564–571

  21. D Amelio A, Cuculo V, Bursic S (2019) Gender recognition in the wild with small sample size-a dictionary learning approach. In: International symposium on formal methods. Springer, pp 162–169

  22. Das A, Dantcheva A, Bremond F (2018) Mitigating bias in gender, age and ethnicity classification: a multi-task convolution neural network approach. In: Proceedings of the European conference on computer vision (ECCV), pp 0–0

  23. Deb D, Nain N, Jain A K (2018) Longitudinal study of child face recognition. In: 2018 international conference on biometrics (ICB). IEEE, pp 225–232

  24. Debgupta R, Chaudhuri B B, Tripathy BK (2020) A wide resnet-based approach for age and gender estimation in face images. In: International conference on innovative computing and communications. Springer, pp 517–530

  25. Duan M, Li K, Yang C, Li K (2018) A hybrid deep learning cnn–elm for age and gender classification. Neurocomputing 275:448–461

    Article  Google Scholar 

  26. Eidinger E, Enbar R, Hassner T (2014) Age and gender estimation of unfiltered faces. IEEE Transactions on Information Forensics and Security 9(12):2170–2179

    Article  Google Scholar 

  27. Escalera S, Fabian J, Pardo P, Baró X, Gonzalez J, Escalante HJ, Misevic D, Steiner U, Guyon I (2015) Chalearn looking at people 2015: Apparent age and cultural event recognition datasets and results. In: Proceedings of the IEEE international conference on computer vision workshops, pp 1–9

  28. Fu Y, Hospedales TM, Xiang T, Yao Y, Gong S (2014) Interestingness prediction by robust learning to rank. In: ECCV

  29. Fu Y, Guo G, Huang TS (2010) Age synthesis and estimation via faces: A survey. IEEE Trans Pattern Anal Mach Intell 32(11):1955–1976

    Article  Google Scholar 

  30. Fu Y, Huang TS (2008) Human age estimation with regression on discriminative aging manifold. IEEE Transactions on Multimedia 10(4):578–584

    Article  Google Scholar 

  31. Fu Y, Huang TS (2008) Human age estimation with regression on discriminative aging manifold. IEEE Transactions on Multimedia 10(4):578–584

    Article  Google Scholar 

  32. Gallagher AC, Chen T (2009) Understanding images of groups of people. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 256–263

  33. Geng X, Yin C, Zhou Z-H (2013) Facial age estimation by learning from label distributions. IEEE Trans Pattern Anal Mach Intell 35(10):2401–2412

    Article  Google Scholar 

  34. Geng X, Zhou Z-H, Smith-Miles K (2007) Automatic age estimation based on facial aging patterns. IEEE Trans Pattern Anal Mach Intell 29 (12):2234–2240

    Article  Google Scholar 

  35. Geng X, Zhou Z-H, Zhang Y, Li G, Dai H (2006) Learning from facial aging patterns for automatic age estimation. In: Proceedings of the 14th ACM international conference on Multimedia, pp 307–316

  36. Guo G (2012) Human age estimation and sex classification. In: Video analytics for business intelligence. Springer, pp 101–131

  37. Guo G, Mu G (2011) Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In: CVPR 2011. IEEE, pp 657–664

  38. Guo G, Mu G (2014) A framework for joint estimation of age, gender and ethnicity on a large database. Image Vis Comput 32(10):761–770

    Article  Google Scholar 

  39. Guo G, Mu G, Fu Y, Dyer C, Huang T (2009) A study on automatic age estimation using a large database. In: 2009 IEEE 12th international conference on computer vision. IEEE, pp 1986–1991

  40. Guo G, Mu G, Fu Y, Huang T S (2009) Human age estimation using bio-inspired features. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 112–119

  41. Gurnani A, Shah K, Gajjar V, Mavani V, Khandhediya Y (2019) Saf-bage: Salient approach for facial soft-biometric classification-age, gender, and facial expression. In: 2019 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 839–847

  42. Gutta S, Huang JRJ, Jonathon P, Wechsler H (2000) Mixture of experts for classification of gender, ethnic origin, and pose of human faces. IEEE Transactions on Neural Networks 11(4):948–960

    Article  Google Scholar 

  43. Han H, Jain AK, Wang F, Shan S, Chen X (2017) Heterogeneous face attribute estimation: A deep multi-task learning approach. IEEE Trans Pattern Anal Mach Intell 40(11):2597–2609

    Article  Google Scholar 

  44. Han H, Otto C, Liu X, Jain A K (2014) Demographic estimation from face images: Human vs. machine performance. IEEE Trans Pattern Anal Mach Intell 37(6):1148–1161

    Article  Google Scholar 

  45. Hassner T, Harel S, Paz E, Enbar R (2015) Effective face frontalization in unconstrained images. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4295–4304

  46. Hong L-J, Wen D, Fang C, Ding X-Q (2013) Face age estimation by using bisection search tree. In: 2013 international conference on machine learning and cybernetics, vol 1. IEEE, pp 370–374

  47. Hsu G-SJ, Cheng Y-T, Ng CC, Yap MH (2017) Component biologically inspired features with moving segmentation for age estimation. In: 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW). IEEE, pp 540–547

  48. Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Tech. Rep. 07-49, University of Massachusetts, Amherst

  49. Jain A, Huang J (2004) Integrating independent components and linear discriminant analysis for gender classification. In: Sixth IEEE international conference on automatic face and gesture recognition, 2004. Proceedings. IEEE, pp 159–163

  50. Jia S, Lansdall-Welfare T, Cristianini N (2016) Gender classification by deep learning on millions of weakly labelled images. In: 2016 IEEE 16th international conference on data mining workshops (ICDMW). IEEE, pp 462–467

  51. Ramesha K, Raja K B, Venugopal KR, Patnaik LM (2010) Feature extraction based face recognition, gender and age classification

  52. Khan A, Majid A, Mirza A M (2005) Combination and optimization of classifiers in gender classification using genetic programming. International Journal of Knowledge-based and Intelligent Engineering Systems 9(1):1–11

    Article  Google Scholar 

  53. Khan K, Attique M, Khan RU, Syed I, Chung T-S (2020) A multi-task framework for facial attributes classification through end-to-end face parsing and deep convolutional neural networks. Sensors 20(2):328

    Article  Google Scholar 

  54. Kim H-C, Kim D, Ghahramani Z, Bang SY (2006) Appearance-based gender classification with gaussian processes. Pattern Recogn Lett 27(6):618–626

    Article  Google Scholar 

  55. Kumar N, Berg AC, Belhumeur PN, Nayar SK (2009) Attribute and simile classifiers for face verification. In: 2009 IEEE 12th international conference on computer vision. IEEE, pp 365–372

  56. Kwon YH, da Vitoria Lobo N (1999) Age classification from facial images. Computer Vision and Image Understanding 74(1):1–21

    Article  Google Scholar 

  57. Lanitis A, Taylor CJ, Cootes TF (2002) Toward automatic simulation of aging effects on face images. IEEE Trans Pattern Anal Mach Intell 24 (4):442–455

    Article  Google Scholar 

  58. Lee J-H, Chan Y-M, Chen T-Y, Chen C-S (2018) Joint estimation of age and gender from unconstrained face images using lightweight multi-task cnn for mobile applications. In: 2018 IEEE conference on multimedia information processing and retrieval (MIPR). IEEE, pp 162–165

  59. Leng X, Wang Y (2008) Improving generalization for gender classification. In: 2008 15th IEEE international conference on image processing. IEEE, pp 1656–1659

  60. Levi G, Hassner T (2015) Age and gender classification using convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 34–42

  61. Li S, Xing J, Niu Z, Shan S, Yan S (2015) Shape driven kernel adaptation in convolutional neural network for robust facial traits recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 222–230

  62. Li W, Lu J, Feng J, Xu C, Zhou J, Tian Q (2019) Bridgenet: A continuity-aware probabilistic network for age estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1145–1154

  63. Li Z, Zhou X, Huang T S (2009) Spatial gaussian mixture model for gender recognition. In: 2009 16th IEEE international conference on image processing (ICIP). IEEE, pp 45–48

  64. Liao H (2019) Facial age feature extraction based on deep sparse representation. Multimedia Tools and Applications 78(2):2181–2197

    Article  Google Scholar 

  65. Liao Z, Petridis S, Pantic M (2017) Local deep neural networks for age and gender classification. arXiv preprint arXiv:1703.08497

  66. Liu H, Lu J, Feng J, Zhou J (2017) Label-sensitive deep metric learning for facial age estimation. IEEE Transactions on Information Forensics and Security 13(2):292–305

    Article  Google Scholar 

  67. Liu X, Zou Y, Kuang H, Ma X (2020) Face image age estimation based on data augmentation and lightweight convolutional neural network. Symmetry 12 (1):146

    Article  Google Scholar 

  68. Liu Z, Luo P, Wang X, Tang X (2015) Deep learning face attributes in the wild. In: Proceedings of the IEEE international conference on computer vision, pp 3730–3738

  69. Lu L, Shi P (2009) A novel fusion-based method for expression-invariant gender classification. In: 2009 IEEE international conference on acoustics, speech and signal processing. IEEE, pp 1065–1068

  70. Luu K, Seshadri K, Savvides M, Bui T D, Suen C Y (2011) Contourlet appearance model for facial age estimation. In: 2011 international joint conference on biometrics (IJCB). IEEE, pp 1–8

  71. Mäkinen E, Raisamo R (2008) An experimental comparison of gender classification methods. Pattern Recogn Lett 29(10):1544–1556

    Article  Google Scholar 

  72. Mansanet J, Albiol A, Paredes R (2016) Local deep neural networks for gender recognition. Pattern Recogn Lett 70:80–86

    Article  Google Scholar 

  73. Moeini H, Mozaffari S (2017) Gender dictionary learning for gender classification. J Vis Commun Image Represent 42:1–13

    Article  Google Scholar 

  74. Moghaddam B, Yang M-H (2002) Learning gender with support faces. IEEE Trans Pattern Anal Mach Intell 24(5):707–711

    Article  Google Scholar 

  75. Niu Z, Zhou M, Wang L, Gao X, Hua G (2016) Ordinal regression with multiple output cnn for age estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4920–4928

  76. Osman O F, Yap M H (2018) Computational intelligence in automatic face age estimation: A survey. IEEE Transactions on Emerging Topics in Computational Intelligence 3(3):271–285

    Article  Google Scholar 

  77. Pan H, Han H, Shan S, Chen X (2018) Mean-variance loss for deep age estimation from a face. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5285–5294

  78. Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The feret evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104

    Article  Google Scholar 

  79. Pirozmand P, Amiri MF, Kashanchi F, Layne NY (2011) Age estimation, a gabor pca-lda approach. J Math Comput Sci 2(2):233–240

    Article  Google Scholar 

  80. Ricanek K, Tesafaye T (2006) Morph: A longitudinal image database of normal adult age-progression. In: 7th international conference on automatic face and gesture recognition (FGR06). IEEE, pp 341–345

  81. Rothe R, Timofte R, Van Gool L (2015) Dex: Deep expectation of apparent age from a single image. In: Proceedings of the IEEE international conference on computer vision workshops, pp 10–15

  82. Rothe R, Timofte R, Van Gool L (2018) Deep expectation of real and apparent age from a single image without facial landmarks. Int J Comput Vis 126 (2-4):144–157

    Article  MathSciNet  Google Scholar 

  83. Rothe R, Timofte R, Van Gool L (2018) Deep expectation of real and apparent age from a single image without facial landmarks. Int J Comput Vis 126 (2-4):144–157

    Article  MathSciNet  Google Scholar 

  84. Scherbaum K, Sunkel M, Seidel H-P, Blanz V (2007) Prediction of individual non-linear aging trajectories of faces. Computer Graphics Forum 26(3):285–294

    Article  Google Scholar 

  85. Shakhnarovich G, Viola PA, Moghaddam B (2002) A unified learning framework for real time face detection and classification. In: Proceedings of Fifth IEEE international conference on automatic face gesture recognition. IEEE, pp 16–23

  86. Shin M, Seo J-H, Kwon D-S (2017) Face image-based age and gender estimation with consideration of ethnic difference. In: 2017 26th IEEE international symposium on robot and human interactive communication (RO-MAN). IEEE, pp 567–572

  87. Simanjuntak F, Azzopardi G (2019) Fusion of cnn-and cosfire-based features with application to gender recognition from face images. In: Science and information conference. Springer, pp 444–458

  88. Somanath G, Rohith MV, Kambhamettu C (2011) Vadana: A dense dataset for facial image analysis. In: 2011 IEEE international conference on computer vision workshops (ICCV Workshops). IEEE, pp 2175–2182

  89. Suo J, Zhu S-C, Shan S, Chen X (2009) A compositional and dynamic model for face aging. IEEE Trans Pattern Anal Mach Intell 32(3):385–401

    Google Scholar 

  90. Taheri S, Toygar O (2019) On the use of dag-cnn architecture for age estimation with multi-stage features fusion. Neurocomputing 329:300–310

    Article  Google Scholar 

  91. Thukral P, Mitra K, Chellappa R (2012) A hierarchical approach for human age estimation. In: 2012 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 1529–1532

  92. Uricar M, Timofte R, Rothe R, Matas J, Van Gool L (2016) Structured output svm prediction of apparent age, gender and smile from deep features. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 25–33

  93. van de Wolfshaar J, Karaaba MF, Wiering MA (2015) Deep convolutional neural networks and support vector machines for gender recognition. In: 2015 IEEE symposium series on computational intelligence. IEEE, pp 188–195

  94. Wang F, Han H, Shan S, Chen X (2017) Deep multi-task learning for joint prediction of heterogeneous face attributes. In: 2017 12th IEEE international conference on automatic face & gesture recognition (FG 2017). IEEE, pp 173–179

  95. Wang J-G, Li J, Lee CY, Yau W-Y (2010) Dense sift and gabor descriptors-based face representation with applications to gender recognition. In: 2010 11th international conference on control automation robotics & vision. IEEE, pp 1860–1864

  96. Wang X, Guo R, Kambhamettu C (2015) Deeply-learned feature for age estimation. In: 2015 IEEE winter conference on applications of computer vision. IEEE, pp 534–541

  97. Wang X, Li R, Zhou Y, Kambhamettu C (2017) A study of convolutional sparse feature learning for human age estimate. In: 2017 12th IEEE international conference on automatic face and gesture recognition (FG 2017). IEEE, pp 566–572

  98. Wilkinson CM, Ferguson E (2016) Juvenile age estimation from facial images. Science & Justice

  99. Yang Z, Ai H (2007) Demographic classification with local binary patterns. In: International conference on biometrics. Springer, pp 464–473

  100. Yi D, Lei Z, Li S Z (2014) Age estimation by multi-scale convolutional network. In: Asian conference on computer vision. Springer, pp 144–158

  101. Yildirim M E, Ince O F, Salman Y B, Song J K, Park J S, Yoon B W (2016) Gender recognition using hog with maximized inter-class difference.. In: VISIGRAPP (3: VISAPP), pp 108–111

  102. Yoo B, Kwak Y, Kim Y, Choi C, Kim J (2018) Deep facial age estimation using conditional multitask learning with weak label expansion. IEEE Signal Process Lett 25(6):808–812

    Article  Google Scholar 

  103. Zhang K, Gao C, Guo L, Sun M, Yuan X, Han T X, Zhao Z, Li B (2017) Age group and gender estimation in the wild with deep ror architecture. IEEE Access 5:22492–22503

    Article  Google Scholar 

  104. Zhang K, Liu N, Yuan X, Guo X, Gao C, Zhao Z, Ma Z (2019) Fine-grained age estimation in the wild with attention lstm networks. IEEE Transactions on Circuits and Systems for Video Technology

  105. Zhang Z, Song Y, Qi H (2017) Age progression/regression by conditional adversarial autoencoder. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5810–5818

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar Gupta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Nain, N. Review: Single attribute and multi attribute facial gender and age estimation. Multimed Tools Appl 82, 1289–1311 (2023). https://doi.org/10.1007/s11042-022-12678-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12678-6

Keywords