Skip to main content
Log in

Cyclic learning rate based HybridSN model for hyperspectral image classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Classification of remotely sensed hyperspectral images (HSI) is a challenging task due to the presence of a large number of spectral bands and due to the less available data of remotely sensed HSI. The use of 3D-CNN and 2D-CNN layers to extract spectral and spatial features shows good test results. The recently introduced HybridSN model for the classification of remotely sensed hyperspectral images is the best to date compared to the other state-of-the-art models. But the test performance of the HybridSN model decreases significantly with the decrease in training data or number of training epochs. In this paper, we have considered cyclic learning for training of the HybridSN model, which shows a significant increase in the test performance of the HybridSN model with 10%, 20%, and 30% training data and limited number of training epochs. Further, we introduce a new cyclic function (ncf) whose training and test performance is comparable to the existing cyclic learning rate policies. More precisely, the proposed HybridSN(ncf ) model has higher average accuracy compared to HybridSN model by 19.47%, 1.81% and 8.33% for Indian Pines, Salinas Scene and University of Pavia datasets respectively in case of 10% training data and limited number of training epochs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Camps-Valls G, Gomez-Chova L, Muñoz-marí J, Vila-Francés J, Calpe-Maravilla J (2006) Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 3(1):93–97

    Article  Google Scholar 

  2. Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral data. IEEE J Sel Top Appl Earth Observ Remote Sens 7(6):2094–2107

    Article  Google Scholar 

  3. Fang L, He N, Li S, Plaza AJ, Plaza J (2018) A new spatial–spectral feature extraction method for hyperspectral images using local covariance matrix representation. IEEE Trans Geosci Remote Sens 56(6):3534–3546

    Article  Google Scholar 

  4. Feng F, Wang S, Wang C, Zhang J (2019) Learning deep hierarchical spatial–spectral features for hyperspectral image classification based on residual 3D-2d CNN. Sensors 19(23):5276

    Article  Google Scholar 

  5. Ge Z, Cao G, Li X, Fu P (2020) Hyperspectral image classification method based on 2D-3d CNN and multibranch feature fusion. IEEE J Sel Top Appl Earth Observ Remote Sens 13:5776–5788

    Article  Google Scholar 

  6. He X, Chen Y (2021) Transferring CNN ensemble for hyperspectral image classification. IEEE Geosci Remote Sens Lett 18(5):876–880

    Article  Google Scholar 

  7. Hinton G, Srivastava N, Swersky K (2012) Neural networks for machine learning lecture 6a overview of mini-batch gradient descent. Cited 14(8):2

    Google Scholar 

  8. Jackson JE, A user’s guide to principal components. Wiley New York (1991)

  9. Jing X-Y, Wu F, Zhu X, Dong X, Ma F, Li Z (2016) Multi-spectral low-rank structured dictionary learning for face recognition. Pattern Recogn 59:14–25

    Article  Google Scholar 

  10. Jolliffe I. T. (2002) Principal component analysis. Springer, New York

  11. Kingma DP, Ba J (2014) Adam: A, method for stochastic optimization. arXiv:1412.6980

  12. Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: Bengio Y, LeCun Y (eds) 3rd International Conference on Learning Representations, ICLR 2015. Conference Track Proceedings, San Diego

  13. Li J, Huang X, Gamba P, Bioucas-Dias JM, Zhang L, Benediktsson JA, Plaza Antonio (2014) Multiple feature learning for hyperspectral image classification. IEEE Trans Geosci Remote sens 53(3):1592–1606

    Article  Google Scholar 

  14. Li Y, He L (2020) An improved hybrid CNN for hyperspectral image classification. In: Eleventh International Conference on Graphics and Image Processing (ICGIP 2019), vol 11373. International Society for Optics and Photonics, pp 113731R

  15. Makantasis K, Karantzalos K, Doulamis A, Doulamis A (2015) Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, pp 4959–4962

  16. Mohan A, Sundaram MV (2021) V3O2: Hybrid deep learning model for hyperspectral image classification using vanilla-3D and octave-2D convolution. J Real-Time Image Proc 18:1681–1695

    Article  Google Scholar 

  17. Mou L, Ghamisi P, Zhu XX (2017) Deep recurrent neural networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 55 (7):3639–3655

    Article  Google Scholar 

  18. Nyasaka D, Wang J, Tinega H (2020) Learning hyperspectral feature extraction and classification with resN,eXt network. arXiv:2002.02585

  19. Paul A, Bhoumik S, Chaki N (2021) SSNET: an improved deep hybrid network for hyperspectral image classification. Neural Comput Appl 33 (5):1575–1585

    Article  Google Scholar 

  20. Roy SK, Krishna G, Dubey SR, Chaudhuri BB (2019) HybridSN Exploring 3D-2d CNN feature hierarchy for hyperspectral image classification. IEEE Geosci Remote Sens Lett 17(2):277–281

    Article  Google Scholar 

  21. Smith LN (2017) Cyclical learning rates for training neural networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, pp 464–472

  22. Wu F, Jing X-Y, Dong X, Hu R, Yue D, Wang L, Ji Y-M, Wang R, Chen G (2018) Intraspectrum discrimination and interspectrum correlation analysis deep network for multispectral face recognition. IEEE Trans Cybern 50 (3):1009–1022

    Article  Google Scholar 

  23. Wu F, Jing X-Y, Feng Y, Yi MJ, Wang R (2021) Spectrum-aware discriminative deep feature learning for multi-spectral face recognition. Pattern Recogn:111

  24. Yang J, Qian J (2017) Hyperspectral image classification via multiscale joint collaborative representation with locally adaptive dictionary. IEEE Geosci Remote Sens Lett 15(1):112–116

    Article  Google Scholar 

  25. Yang S, Deng B, Wang J, Li H, Lu M, Che Y, Wei X, Loparo KA (2019) Scalable digital neuromorphic architecture for large-scale biophysically meaningful neural network with multi-compartment neurons. IEEE Trans Neural Netw Learn Syst 31(1):148–162

    Article  Google Scholar 

  26. Yang S, Deng B, Wang J, Liu C, Li H, Lin Q, Fietkiewicz C, Loparo KA (2018) Design of hidden-property-based variable universe fuzzy control for movement disorders and its efficient reconfigurable implementation. IEEE Trans Fuzzy Syst 27(2):304–318

    Article  Google Scholar 

  27. Yang S, Gao T, Wang J, Deng B, Lansdell B, Linares-Barranco B (2021) Efficient spike-driven learning with dendritic event-based processing. Front Neurosci 15:97

    Google Scholar 

  28. Yang S, Wang J, Deng B, Azghadi MR, Linares-Barranco B (2021) Neuromorphic context-dependent learning framework with fault-tolerant spike routing. IEEE Transactions on Neural Networks and Learning Systems

  29. Yang S, Wang J, Hao X, Li H, Wei X, Deng B, Loparo KA (2021) BiCoSS: toward large-scale cognition brain with multigranular neuromorphic architecture. IEEE Transactions on Neural Networks and Learning Systems

  30. Yang S, Wang J, Zhang N, Deng B, Pang Y, Azghadi MR (2021) CerebelluMorphic: large-scale neuromorphic model and architecture for supervised motor learning. IEEE Transactions on Neural Networks and Learning Systems

  31. Yang S, Wei X, Deng B, Liu C, Li H, Wang J (2018) Efficient digital implementation of a conductance-based globus pallidus neuron and the dynamics analysis. Physica A: Stat Mech Appl 494:484–502

    Article  MathSciNet  Google Scholar 

  32. Zeiler MD (2012) Adadelta: an adaptive learning rate method. arXiv:1212.5701

  33. Zhong Z, Li J, Luo Z, Chapman M (2017) Spectral–spatial residual network for hyperspectral image classification: a 3D deep learning framework. IEEE Trans Geosci Remote Sens 56(2):847–858

    Article  Google Scholar 

  34. Zhu L, Chen Y, Ghamisi P, Benediktsson JA (2018) Generative adversarial networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 56(9):5046–5063

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Ethics declarations

Conflict of Interests

The authors declare that they have no confict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaish, P.P., Rani, K. & Kumar, S. Cyclic learning rate based HybridSN model for hyperspectral image classification. Multimed Tools Appl 81, 32723–32738 (2022). https://doi.org/10.1007/s11042-022-12679-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12679-5

Keywords

Navigation