Abstract
As an important modality for human identification, Ear based biometric has achieved a relatively mature level of development, as it faces higher challenges surrounded by the real-world applications of biometric technology. One such challenge is extracting a unique template that leads to making a reliable identification task. In the most existing ear biometric approaches, the features were calculated from the 2D and 3D images. In the presented work, we have well investigated the performance of 1D-LBP and its variations (i.e., standard 1D-LBP, shifted-1D-LBP, 1D-Multi-Resolution-LBP, Local Centroid Pattern, Local Ternary Pattern, Local neighbor gradient pattern and 1D-Noise-tolerant local binary pattern) on ear recognition. Typically, the 1D-LBP treats the ear image as a 1D vector where the histograms of the produced image are then used as features to describe a human ear. The experimental results show that the LBP’s in 1D is promising in developing a robust handcrafted feature for ear recognition.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig10_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig11_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig12_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig13_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig14_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig15_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig16_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig17_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig18_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig19_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig20_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig21_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig22_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-12700-x/MediaObjects/11042_2022_12700_Fig23_HTML.png)
Similar content being viewed by others
References
Alagarsamy SB, Murugan K (2020) Ear recognition system using adaptive approach runge-kutta (aark) threshold segmentation with cart classifier. Multimed Tools Appl 79(15):10445–10459
Annapurani K, Sadiq M, Malathy C (2015) Fusion of shape of the ear and tragus–a unique feature extraction method for ear authentication system. Expert Syst Appl 42(1):649–656
Anwar AS, Ghany KKA, Elmahdy H (2015) Human ear recognition using geometrical features extraction. Procedia Comput Sci 65:529–537
Benzaoui A, Adjabi I, Boukrouche A (2017) Experiments and improvements of ear recognition based on local texture descriptors. Opt Eng 56(4):043109
Benzaoui A, Hadid A, Boukrouche A (2014) Ear biometric recognition using local texture descriptors. J Electron Imag 23(5):053008
Bertillon A (1890) La photographie judiciaire: avec un appendice sur la classification et l’identification anthropométriques. Gauthier-Villars, Paris
Boodoo NB, Jahangeer, Baichoo S (2013) Lbp-based ear recognition. In: 13th IEEE international conference on bioinformatics and bioengineering, pp 1–4. IEEE
Chatlani N, Soraghan JJ (2010) Local binary patterns for 1-d signal processing. In: Signal processing conference, 2010 18th European, pp 95–99. IEEE
Doghmane H, Boukrouche A, Boubchir L (2019) A novel discriminant multiscale representation for ear recognition. Int J Biometr 11(1):50–66
Emeršič ž, Štepec D, Štruc V, Peer P, George A, Ahmad A, Omar E, Boult TE, Safdaii R, Zhou Y et al (2017) The unconstrained ear recognition challenge. In: 2017 IEEE international joint conference on biometrics (IJCB), pp 715–724. IEEE
Emeršič ž, Štruc V, Peer P (2017) Ear recognition: more than a survey. Neurocomputing 255:26–39
Ertuǧrul ÖF, Kaya Y, Tekin R, Almalı MN (2016) Detection of parkinson’s disease by shifted one dimensional local binary patterns from gait. Expert Syst Appl 56:156–163
Fadaei S, Amirfattahi R, Ahmadzadeh MR (2017) Local derivative radial patterns: a new texture descriptor for content-based image retrieval. Signal Process 137:274–286
Ghoualmi L, Draa A, Chikhi S (2015) Ear feature extraction using a dwt-sift hybrid. In: Intelligent data analysis and applications, pp 37–47. Springer
Gonzalez E, Alvarez L, Mazorra L (2008) Ami ear database. Centro de I+ D de Tecnologias de la Imagen
Hassaballah M, Alshazly HA, Ali AA (2019) Ear recognition using local binary patterns: a comparative experimental study. Expert Syst Appl 118:182–200
Hassaballah M, Alshazly HA, Ali AA (2020) Robust local oriented patterns for ear recognition. Multimed Tools Appl 79(41):31183–31204
Hongwei H, Peng G, Wang X, Zhou Z (2018) Weld defect classification using 1-d lbp feature extraction of ultrasonic signals. Nondestruct Test Eval 33 (1):92–108
Houam L, Hafiane A, Jennane R, Boukrouche A, Lespessailles E (2010) Trabecular bone anisotropy characterization using 1d local binary patterns. In: International conference on advanced concepts for intelligent vision systems, pp 105–113. Springer
Huang X, Wang S-J, Zhao G, Piteikainen M (2015) Facial micro-expression recognition using spatiotemporal local binary pattern with integral projection. In: Proceedings of the IEEE international conference on computer vision workshops, pp 1–9
Iannerelli A (1989) Ear identification forensic identification series
Jahangeer NB, Boodoo, Subramanian RK (2009) Robust multi biometric recognition using face and ear images. arXiv:0912.0955
Jain AK, Flynn P, Ross AA (2007) Handbook of biometrics. Springer Science & Business Media
Jaiswal AK, Banka H (2018) Local transformed features for epileptic seizure detection in eeg signal. J Med Biol Eng 38(2):222–235
Karaboga D (2005) An idea based on honey bee swarm for numerical optimization
Kaya Y, Ertuǧrul ÖF (2018) A stable feature extraction method in classification epileptic eeg signals. Australasian Phys Eng Sci Med 41(3):721–730
Kaya Y, Uyar M, Tekin R, Yıldırım S (2014) 1d-local binary pattern based feature extraction for classification of epileptic eeg signals. Appl Math Comput 243:209–219
Kylberg G, Sintorn I-M (2013) Evaluation of noise robustness for local binary pattern descriptors in texture classification. EURASIP J Image Vid Process 2013(1):17
Liu Y, Zhang B, Lu G, Zhang D (2016) Online 3d ear recognition by combining global and local features. PloS one 11(12):e0166204
Louis W, Hatzinakos D, Venetsanopoulos A (2014) One dimensional multi-resolution local binary patterns features (1dmrlbp) for regular electrocardiogram (ecg) waveform detection. In: 2014 19th International conference on digital signal processing (DSP), pp 601–606. IEEE
Lu S, Wang S-H, Zhang Y-D (2020) Detection of abnormal brain in mri via improved alexnet and elm optimized by chaotic bat algorithm. Neural Comput Applic, 1–13
Mehraj H, Mir AH (2020) Human recognition using ear based deep learning features. In: 2020 International conference on emerging smart computing and informatics (ESCI), pp 357–360. IEEE
Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29(1):51–59
Pflug A, Busch C (2012) Ear biometrics: a survey of detection, feature extraction and recognition methods. IET Biometr 1(2):114–129
Pietikäinen M, Hadid A, Zhao G, Ahonen T (2011) Computer vision using local binary patterns, vol 40. Springer Science & Business Media
Radhika K, Devika K, Aswathi T, Sreevidya P, Sowmya V, Soman KP (2020) Performance analysis of nasnet on unconstrained ear recognition. In: Nature inspired computing for data science, pp 57–82. Springer
Regouid M, Benouis M (2018) Shifted 1d-lbp based ecg recognition system. In: International symposium on modelling and implementation of complex systems, pp 168–179. Springer
Regouid M, Touahria M, Benouis M, Costen N (2019) Multimodal biometric system for ecg, ear and iris recognition based on local descriptors. Multimed Tools Appl, 1–27
Sairamya NJ, Thomas George S, Balakrishnan R, Subathra MSP (2018) An effective approach to classify epileptic eeg signal using local neighbor gradient pattern transformation methods. Australasian Phys Eng Sci Med 41(4):1029–1046
Sayed MT, Chalechale A (2019) Local binary patterns for noise-tolerant semg classification. SIViP 13(3):491–498
Sepas-Moghaddam A, Pereira F, Correia PL (2018) Ear recognition in a light field imaging framework: a new perspective. IET Biometrics 7(3):224–231
Tan X, Bill T (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650
Tirunagari S, Kouchaki S, Abasolo D, Poh N (2017) One dimensional local binary patterns of electroencephalogram signals for detecting alzheimer’s disease. In: 2017 22nd International conference on digital signal processing (DSP), pp 1–5. IEEE
Wang S, Sun J, Mehmood I, Pan C, Chen Y, Zhang Y-D (2020) Cerebral micro-bleeding identification based on a nine-layer convolutional neural network with stochastic pooling. Concurr Comput Pract Exper 32(1):e5130
Watabe D, Sai H, Ueda T, Sakai K, Nakamura O (2009) Ica, lda, and gabor jets for robust ear recognition, and jet space similarity for ear detection. Int J Intell Comput Med Sci Image Process 3(1):9–29
Yan P, Bowyer KW (2005) Ear biometrics using 2d and 3d images. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05)-Workshops, pp 121–121. IEEE
Youbi Z, Boubchir L, Bounneche MD, Ali-Chérif A, Boukrouche A (2016) Human ear recognition based on multi-scale local binary pattern descriptor and kl divergence. In: 2016 39th International conference on telecommunications and signal processing (TSP), pp 685–688. IEEE
Yuan L, Mu Z Ear recoginition laboratory at ustb, 2004. [Online; accessed 19-February-2017]
Zavar AB, Nixon MS (2008) Robust log-gabor filter for ear biometrics. In: 2008 19th International conference on pattern recognition, pp 1–4. IEEE
Acknowledgements
We would like to thank the providers of AMI, USTB1, USTB2 and AWE ear databases used in this work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Regouid, M., Touahria, M., Benouis, M. et al. Comparative study of 1D-local descriptors for ear biometric system. Multimed Tools Appl 81, 29477–29503 (2022). https://doi.org/10.1007/s11042-022-12700-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-022-12700-x