Abstract
Lung cancer is one of the highest deadly disease which can be treated effectively in its early stage. Computer aided detection (CADe) can detect pulmonary nodules of lung cancer accurately and faster than manual detection. This paper presents a new CADe system using neuro-evolutional approach. The proposed method is focused on machine learning algorithm which is a crucial area of the system. The CADe system extracts lung regions from computed tomography images and detects pulmonary nodules within the lung regions. False positive reduction is performed by using a new neuro-evolutionary approach which consists of a feed-forward neural network and a combination of cuckoo search algorithm and particle swarm optimization. The performance of the proposed method is further improved by using regularized discriminant features and achieves 95.8% sensitivity, 95.3% specificity and 95.5% accuracy.





Similar content being viewed by others
References
Arimura H, Katsuragawa S, Suzuki K, Li F, Shiraishi J, Sone S, Doi K (2004) Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening1. Acad Radiol 11 (6):617–629
Armato IIISG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Clarke LP et al (2015) Data from lidc-idri. The cancer imaging archive 9:7. https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX
Armato SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA et al (2011) The lung image database consortium (lidc) and image database resource initiative (idri): a completed reference database of lung nodules on ct scans. Med Phys 38 (2):915–931
Cao W, Haralick R (2009) Affine feature extraction: a generalization of the fukunaga–koontz transformation. Eng Appl Artif Intell 22(1):40–47
Cao H, Liu H, Song E, Ma G, Xu X, Jin R, Liu T, Hung CC (2020) A two-stage convolutional neural networks for lung nodule detection. IEEE Journal of Biomedical and Health Informatics 24(7):2006–2015
Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M et al (2013) The cancer imaging archive (tcia): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057
Deb K (1999) An introduction to genetic algorithms. Sadhana 24 (4-5):293–315
Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, vol 4. Citeseer, pp 1942–1948
El-Baz A, Beache GM, Gimel’farb G, Suzuki K, Okada K, Elnakib A, Soliman A, Abdollahi B (2013) Computer-aided diagnosis systems for lung cancer: challenges and methodologies. International journal of biomedical imaging, 2013
Farag AA, El-Baz A, Gimel’farb GG, Falk R, Hushek SG (2004) Automatic detection and recognition of lung abnormalities in helical ct images using deformable templates. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 856–864
Farahani FV, Ahmadi A, Zarandi MHF (2018) Hybrid intelligent approach for diagnosis of the lung nodule from ct images using spatial kernelized fuzzy c-means and ensemble learning. Math Comput Simul 149:48–68
Friedman JH (1989) Regularized discriminant analysis. Journal of the American statistical association 84(405):165–175
Golosio B, Masala GL, Piccioli A, Oliva P, Carpinelli M, Cataldo R, Cerello P, De Carlo F, Falaschi F, Fantacci ME et al (2009) A novel multithreshold method for nodule detection in lung ct. Med Phys 36(8):3607–3618
Gong J, Jy Liu, Lj Wang, Xw Sun, Zheng B, Sd Nie (2018) Automatic detection of pulmonary nodules in ct images by incorporating 3d tensor filtering with local image feature analysis. Physica Medica 46:124–133
Han H, Li L, Han F, Zhang H, Moore W, Liang Z (2013) Vector quantization-based automatic detection of pulmonary nodules in thoracic ct images. In: Nuclear science symposium and medical imaging conference (NSS/MIC), 2013, IEEE, IEEE, pp 1–4
Hardie RC, Rogers SK, Wilson T, Rogers A (2008) Performance analysis of a new computer aided detection system for identifying lung nodules on chest radiographs. Med Image Anal 12(3):240–258
Huidrom R, Chanu YJ, Singh KM (2019) Pulmonary nodule detection on computed tomography using neuro-evolutionary scheme. SIViP 13(1):53–60
Iqbal S, Iqbal K, Arif F, Shaukat A, Khanum A (2014) Potential lung nodules identification for characterization by variable multistep threshold and shape indices from ct images. Computational and Mathematical Methods in Medicine, 2014
Jacobs C, van Rikxoort EM, Twellmann T, Scholten ET, de Jong PA, Kuhnigk JM, Oudkerk M, de Koning HJ, Prokop M, Schaefer-Prokop C et al (2014) Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images. Medical image analysis 18(2):374–384
Jin X, Han J (2016) K-medoids clustering. In: Encyclopedia of machine learning and data mining. Springer, pp 1–3
Ko JP, Betke M (2001) Chest ct: automated nodule detection and assessment of change over time—preliminary experience. Radiology 218(1):267–273
Li W, Cao P, Zhao D, Wang J (2016) Pulmonary nodule classification with deep convolutional neural networks on computed tomography images. Computational and Mathematical Methods in Medicine 2016:1–7
Messay T, Hardie RC, Rogers SK (2010) A new computationally efficient cad system for pulmonary nodule detection in ct imagery. Med Image Anal 14 (3):390–406
Murphy K, van Ginneken B, Schilham AM, De Hoop B, Gietema H, Prokop M (2009) A large-scale evaluation of automatic pulmonary nodule detection in chest ct using local image features and k-nearest-neighbour classification. Med Image Anal 13(5):757–770
Paul R, Hawkins S, Schabath MB, Gillies RJ, Hall LO, Goldgof DB (2018) Predicting malignant nodules by fusing deep features with classical radiomics features. Journal of Medical Imaging 5(1):011021
Retico A, Delogu P, Fantacci ME, Gori I, Martinez AP (2008) Lung nodule detection in low-dose and thin-slice computed tomography. Comput Biol Med 38(4):525–534
Setio AAA, Traverso A, De Bel T, Berens MS, van den Bogaard C, Cerello P, Chen H, Dou Q, Fantacci ME, Geurts B et al (2017) Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Med Image Anal 42:1–13
Tartar A, Kılıç N, Akan A (2013) A new method for pulmonary nodule detection using decision trees. In: Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE. IEEE, pp 7355–7359
Teramoto A, Fujita H (2013) Fast lung nodule detection in chest ct images using cylindrical nodule-enhancement filter. Int J CARS 8(2):193–205
Teramoto A, Fujita H, Takahashi K, Yamamuro O, Tamaki T, Nishio M, Kobayashi T (2014) Hybrid method for the detection of pulmonary nodules using positron emission tomography/computed tomography: a preliminary study. Int J CARS 9(1):59–69
Van Ginneken B, Armato IIISG, de Hoop B, Van Amelsvoort-van de Vorst S, Duindam T, Niemeijer M, Murphy K, Schilham A, Retico A, Fantacci ME et al (2010) Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the anode09 study. Med Image Anal 14(6):707–722
Viale PH (2020) The american cancer society’s facts & figures: 2020 edition. Journal of the Advanced Practitioner in Oncology 11(2):135
Wiemker R, Rogalla P, Zwartkruis A, Blaffert T (2002) Computer-aided lung nodule detection on high-resolution ct data. In: Medical imaging 2002: Image processing, international society for optics and photonics, vol 4684, pp 677–688
Yang XS, Deb S (2009) Cuckoo search via lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214
Yang XS, Deb S (2010) Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation 1(4):330
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Huidrom, R., Chanu, Y.J. & Singh, K.M. Neuro-evolutional based computer aided detection system on computed tomography for the early detection of lung cancer. Multimed Tools Appl 81, 32661–32673 (2022). https://doi.org/10.1007/s11042-022-12722-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-022-12722-5