Skip to main content
Log in

Neuro-evolutional based computer aided detection system on computed tomography for the early detection of lung cancer

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Lung cancer is one of the highest deadly disease which can be treated effectively in its early stage. Computer aided detection (CADe) can detect pulmonary nodules of lung cancer accurately and faster than manual detection. This paper presents a new CADe system using neuro-evolutional approach. The proposed method is focused on machine learning algorithm which is a crucial area of the system. The CADe system extracts lung regions from computed tomography images and detects pulmonary nodules within the lung regions. False positive reduction is performed by using a new neuro-evolutionary approach which consists of a feed-forward neural network and a combination of cuckoo search algorithm and particle swarm optimization. The performance of the proposed method is further improved by using regularized discriminant features and achieves 95.8% sensitivity, 95.3% specificity and 95.5% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arimura H, Katsuragawa S, Suzuki K, Li F, Shiraishi J, Sone S, Doi K (2004) Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening1. Acad Radiol 11 (6):617–629

    Article  Google Scholar 

  2. Armato IIISG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Clarke LP et al (2015) Data from lidc-idri. The cancer imaging archive 9:7. https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX

    Google Scholar 

  3. Armato SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA et al (2011) The lung image database consortium (lidc) and image database resource initiative (idri): a completed reference database of lung nodules on ct scans. Med Phys 38 (2):915–931

    Article  Google Scholar 

  4. Cao W, Haralick R (2009) Affine feature extraction: a generalization of the fukunaga–koontz transformation. Eng Appl Artif Intell 22(1):40–47

    Article  Google Scholar 

  5. Cao H, Liu H, Song E, Ma G, Xu X, Jin R, Liu T, Hung CC (2020) A two-stage convolutional neural networks for lung nodule detection. IEEE Journal of Biomedical and Health Informatics 24(7):2006–2015

    Google Scholar 

  6. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M et al (2013) The cancer imaging archive (tcia): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057

    Article  Google Scholar 

  7. Deb K (1999) An introduction to genetic algorithms. Sadhana 24 (4-5):293–315

    Article  MathSciNet  Google Scholar 

  8. Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, vol 4. Citeseer, pp 1942–1948

  9. El-Baz A, Beache GM, Gimel’farb G, Suzuki K, Okada K, Elnakib A, Soliman A, Abdollahi B (2013) Computer-aided diagnosis systems for lung cancer: challenges and methodologies. International journal of biomedical imaging, 2013

  10. Farag AA, El-Baz A, Gimel’farb GG, Falk R, Hushek SG (2004) Automatic detection and recognition of lung abnormalities in helical ct images using deformable templates. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 856–864

  11. Farahani FV, Ahmadi A, Zarandi MHF (2018) Hybrid intelligent approach for diagnosis of the lung nodule from ct images using spatial kernelized fuzzy c-means and ensemble learning. Math Comput Simul 149:48–68

    Article  MathSciNet  Google Scholar 

  12. Friedman JH (1989) Regularized discriminant analysis. Journal of the American statistical association 84(405):165–175

    Article  MathSciNet  Google Scholar 

  13. Golosio B, Masala GL, Piccioli A, Oliva P, Carpinelli M, Cataldo R, Cerello P, De Carlo F, Falaschi F, Fantacci ME et al (2009) A novel multithreshold method for nodule detection in lung ct. Med Phys 36(8):3607–3618

    Article  Google Scholar 

  14. Gong J, Jy Liu, Lj Wang, Xw Sun, Zheng B, Sd Nie (2018) Automatic detection of pulmonary nodules in ct images by incorporating 3d tensor filtering with local image feature analysis. Physica Medica 46:124–133

    Article  Google Scholar 

  15. Han H, Li L, Han F, Zhang H, Moore W, Liang Z (2013) Vector quantization-based automatic detection of pulmonary nodules in thoracic ct images. In: Nuclear science symposium and medical imaging conference (NSS/MIC), 2013, IEEE, IEEE, pp 1–4

  16. Hardie RC, Rogers SK, Wilson T, Rogers A (2008) Performance analysis of a new computer aided detection system for identifying lung nodules on chest radiographs. Med Image Anal 12(3):240–258

    Article  Google Scholar 

  17. Huidrom R, Chanu YJ, Singh KM (2019) Pulmonary nodule detection on computed tomography using neuro-evolutionary scheme. SIViP 13(1):53–60

    Article  Google Scholar 

  18. Iqbal S, Iqbal K, Arif F, Shaukat A, Khanum A (2014) Potential lung nodules identification for characterization by variable multistep threshold and shape indices from ct images. Computational and Mathematical Methods in Medicine, 2014

  19. Jacobs C, van Rikxoort EM, Twellmann T, Scholten ET, de Jong PA, Kuhnigk JM, Oudkerk M, de Koning HJ, Prokop M, Schaefer-Prokop C et al (2014) Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images. Medical image analysis 18(2):374–384

    Article  Google Scholar 

  20. Jin X, Han J (2016) K-medoids clustering. In: Encyclopedia of machine learning and data mining. Springer, pp 1–3

  21. Ko JP, Betke M (2001) Chest ct: automated nodule detection and assessment of change over time—preliminary experience. Radiology 218(1):267–273

    Article  Google Scholar 

  22. Li W, Cao P, Zhao D, Wang J (2016) Pulmonary nodule classification with deep convolutional neural networks on computed tomography images. Computational and Mathematical Methods in Medicine 2016:1–7

    Google Scholar 

  23. Messay T, Hardie RC, Rogers SK (2010) A new computationally efficient cad system for pulmonary nodule detection in ct imagery. Med Image Anal 14 (3):390–406

    Article  Google Scholar 

  24. Murphy K, van Ginneken B, Schilham AM, De Hoop B, Gietema H, Prokop M (2009) A large-scale evaluation of automatic pulmonary nodule detection in chest ct using local image features and k-nearest-neighbour classification. Med Image Anal 13(5):757–770

    Article  Google Scholar 

  25. Paul R, Hawkins S, Schabath MB, Gillies RJ, Hall LO, Goldgof DB (2018) Predicting malignant nodules by fusing deep features with classical radiomics features. Journal of Medical Imaging 5(1):011021

    Article  Google Scholar 

  26. Retico A, Delogu P, Fantacci ME, Gori I, Martinez AP (2008) Lung nodule detection in low-dose and thin-slice computed tomography. Comput Biol Med 38(4):525–534

    Article  Google Scholar 

  27. Setio AAA, Traverso A, De Bel T, Berens MS, van den Bogaard C, Cerello P, Chen H, Dou Q, Fantacci ME, Geurts B et al (2017) Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Med Image Anal 42:1–13

    Article  Google Scholar 

  28. Tartar A, Kılıç N, Akan A (2013) A new method for pulmonary nodule detection using decision trees. In: Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE. IEEE, pp 7355–7359

  29. Teramoto A, Fujita H (2013) Fast lung nodule detection in chest ct images using cylindrical nodule-enhancement filter. Int J CARS 8(2):193–205

    Article  Google Scholar 

  30. Teramoto A, Fujita H, Takahashi K, Yamamuro O, Tamaki T, Nishio M, Kobayashi T (2014) Hybrid method for the detection of pulmonary nodules using positron emission tomography/computed tomography: a preliminary study. Int J CARS 9(1):59–69

    Article  Google Scholar 

  31. Van Ginneken B, Armato IIISG, de Hoop B, Van Amelsvoort-van de Vorst S, Duindam T, Niemeijer M, Murphy K, Schilham A, Retico A, Fantacci ME et al (2010) Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the anode09 study. Med Image Anal 14(6):707–722

    Article  Google Scholar 

  32. Viale PH (2020) The american cancer society’s facts & figures: 2020 edition. Journal of the Advanced Practitioner in Oncology 11(2):135

    MathSciNet  Google Scholar 

  33. Wiemker R, Rogalla P, Zwartkruis A, Blaffert T (2002) Computer-aided lung nodule detection on high-resolution ct data. In: Medical imaging 2002: Image processing, international society for optics and photonics, vol 4684, pp 677–688

  34. Yang XS, Deb S (2009) Cuckoo search via lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214

  35. Yang XS, Deb S (2010) Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation 1(4):330

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratishchandra Huidrom.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 615 KB)

(PDF 935 KB)

(PDF 1.27 MB)

(PDF 460 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huidrom, R., Chanu, Y.J. & Singh, K.M. Neuro-evolutional based computer aided detection system on computed tomography for the early detection of lung cancer. Multimed Tools Appl 81, 32661–32673 (2022). https://doi.org/10.1007/s11042-022-12722-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12722-5

Keywords