Skip to main content

Advertisement

Log in

AgriBot: a mobile application for imaging farm fields

Imaging of the farm fields

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The issue of food security is one of the serious challenges. Precision agriculture, including imaging and analyzing the captured images is used to increase productivity. In this paper a software for smartphones is proposed for imaging the agricultural fields. In app, the imaging process is facilitated using all the available capabilities of the smartphone. By app, the farmer first determines the boundary of the field just by walking around it. The app provides pattern of imaging points. The farmer captures images of the land. Then, panoramic image of whole field is rendered using planar stitching algorithm. Based on the experiments performed in accordance with the technical specifications of the used smartphone, it was determined that the app has the ability to capture images with 0.09 centimeter spatial resolution. By comparing the features of the imaging method provided by the app with other imaging methods, it is clear that the proposed app provides images with much better spatial resolution and time-controlled resolution or revisiting rate by the farmer at a much lower cost. By analyzing the images obtained from this app, using a variety of classification, detection, recognition, etc. algorithms based on tools such as deep learning, knowledge such as the pattern of distribution of various weeds, pests and diseases on the field is obtained. By this knowledge, the farmer can make timely and effective decisions. This app provides a valuable source of information for a wide range of smallholders to benefit from new technologies to ensure food security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Agriculture drones (2019). https://www.postscapes.com/agriculture-drone-companies/. Https://www.postscapes.com/agriculture-drone-companies/ Accessed 8 June 2021

  2. Abioye EA, Abidin MSZ, Mahmud MSA, Buyamin S, Ishak MHI, Rahman MKIA, Otuoze AO, Onotu P, Ramli MSA (2020) A review on monitoring and advanced control strategies for precision irrigation. Comput Electron Agri 173:105441. https://doi.org/10.1016/j.compag.2020.105441, https://www.sciencedirect.com/science/article/pii/S0168169919314826

    Article  Google Scholar 

  3. apollomapping: Worldview-4 price (2021). https://apollomapping.com/worldview-4-satellite-imagery. Https://apollomapping.com/worldview-4-satellite-imagery Accessed 8 June 2021

  4. Bajpai P, Upadhyay A, Jana S, Kim J, Bandlamudi VK (2018) High quality real-time panorama on mobile devices. In: 2018 IEEE International conference on multimedia expo workshops (ICMEW), pp 1–4. https://doi.org/10.1109/ICMEW.2018.8551505

  5. Bordallo-Lopez M, Silvén O, Tico M, Vehviläinen M (2007) Creating panoramas on mobile phones. In: Computational imaging V, vol 6498, p X00000. 649807 International Society for Optics and Photonics. https://doi.org/10.1117/12.703527, https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6498/649807/Creating-panoramas-on-mobile-phones/10.1117/12.703527.short

  6. Brugger F (2011) Mobile applications in agriculture. Tech. rep., Syngenta Foundation, Basel, Switzerland, Syngenta Foundation. Basel

  7. Cheng X, Zhang Y, Chen Y, Wu Y, Yue Y (2017) Pest identification via deep residual learning in complex background. Comput Electron Agri 141:351–356. https://doi.org/10.1016/j.compag.2017.08.005, https://www.sciencedirect.com/science/article/pii/S0168169917304854

    Article  Google Scholar 

  8. DigitalGlobe: Remote sensing technology trends and agriculture (2015). https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/31/DG-RemoteSensing-WP.pdf. Https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/31/DG-RemoteSensing-WP.pdf Accessed 8 June 2021

  9. Emilien AV, Thomas C, Thomas H (2021) Uav & satellite synergies for optical remote sensing applications: a literature review. Sci Rem Sens 3:100019. https://doi.org/10.1016/j.srs.2021.100019, https://www.sciencedirect.com/science/article/pii/S2666017221000067

    Google Scholar 

  10. Feng L, Chen S, Zhang C, Zhang Y, He Y (2021) A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping. Comput Electron Agri 182:106033. https://doi.org/10.1016/j.compag.2021.106033, https://www.sciencedirect.com/science/article/pii/S016816992100051X

    Article  Google Scholar 

  11. Fritz S, See L, Bayas JCL, Waldner F, Jacques D, Becker-Reshef I, Whitcraft A, Baruth B, Bonifacio R, Crutchfield J, Rembold F, Rojas O, Schucknecht A, Van der Velde M, Verdin J, Wu B, Yan N, You L, Gilliams S, Mücher S, Tetrault R, Moorthy I, McCallum I (2019) A comparison of global agricultural monitoring systems and current gaps. Agri Syst 168:258–272. https://doi.org/10.1016/j.agsy.2018.05.010, https://www.sciencedirect.com/science/article/pii/S0308521X17312027

    Article  Google Scholar 

  12. Hasan ASMM, Sohel F, Diepeveen D, Laga H, Jones MG (2021) A survey of deep learning techniques for weed detection from images. Comput Electron Agri 184:106067. https://doi.org/10.1016/j.compag.2021.106067, https://www.sciencedirect.com/science/article/pii/S0168169921000855

    Article  Google Scholar 

  13. Humair LL (2015) Online gyroscope-camera autocalibration for image enhancement on smartphones. Ph.D. thesis, Institute for Pervasive Computing, Department of Computer Science, ETH Zurich. https://doi.org/10.3929/ethz-a-010510186

  14. Jain A, Kapetanovic Z, Kumar A, Swamy VN, Patil R, Vasisht D, Sharma R, Swaminathan M, Chandra R, Badam A, Ranade G, Sinha S, N AUNS (2019) Low-cost aerial imaging for small holder farmers. In: Proceedings of the 2nd ACM SIGCAS conference on computing and sustainable societies, COMPASS ’19. https://doi.org/10.1145/3314344.3332485. Association for Computing Machinery, New York, pp 41–51

  15. Jiang H, Zhang C, Qiao Y, Zhang Z, Zhang W, Song C (2020) Cnn feature based graph convolutional network for weed and crop recognition in smart farming. Comput Electron Agri 174:105450. https://doi.org/10.1016/j.compag.2020.105450, https://www.sciencedirect.com/science/article/pii/S0168169919321349

    Article  Google Scholar 

  16. Khanal S, Fulton J, Shearer S (2017) An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput Electron Agri 139:22–32. https://doi.org/10.1016/j.compag.2017.05.001, https://www.sciencedirect.com/science/article/pii/S0168169916310225

    Article  Google Scholar 

  17. Lee WS, Ehsani R (2015) Sensing systems for precision agriculture in Florida. Comput Electron Agri 112:2–9. https://doi.org/10.1016/j.compag.2014.11.005, https://www.sciencedirect.com/science/article/pii/S0168169914002865. Precision Agriculture

    Article  Google Scholar 

  18. Li D, Li C, Yao Y, Li M, Liu L (2020) Modern imaging techniques in plant nutrition analysis: a review. Comput Electron Agri 174:105459. https://doi.org/10.1016/j.compag.2020.105459, https://www.sciencedirect.com/science/article/pii/S0168169919302443

    Article  Google Scholar 

  19. Li W, Wang D, Li M, Gao Y, Wu J, Yang X (2021) Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse. Comput Electron Agri 183:106048. https://doi.org/10.1016/j.compag.2021.106048, https://www.sciencedirect.com/science/article/pii/S0168169921000661

    Article  Google Scholar 

  20. Lyu W, Zhou Z, Chen L, Zhou Y (2019) A survey on image and video stitching. Virt Real Intell Hardware 1 (1):55–83. https://doi.org/10.3724/SP.J.2096-5796.2018.0008, http://www.sciencedirect.com/science/article/pii/S2096579619300063

    Article  Google Scholar 

  21. Maghsoudi H, Minaei S, Ghobadian B, Masoudi H (2015) Ultrasonic sensing of pistachio canopy for low-volume precision spraying. Comput Electron Agri 112:149–160. https://doi.org/10.1016/j.compag.2014.12.015, https://www.sciencedirect.com/science/article/pii/S0168169914003251. Precision Agriculture

    Article  Google Scholar 

  22. Mastelic T, Lorincz J, Ivandic I, Boban M (2020) Aerial imagery based on commercial flights as remote sensing platform. Sensors 20:6. https://doi.org/10.3390/s20061658, https://www.mdpi.com/1424-8220/20/6/1658

    Article  Google Scholar 

  23. Mendes J, Pinho TM, Neves dos Santos F, Sousa JJ, Peres E, Boaventura-Cunha J, Cunha M, Morais R (2020) Smartphone applications targeting precision agriculture practices—a systematic review. Agronomy 10(6):855. https://doi.org/10.3390/agronomy10060855, https://www.mdpi.com/2073-4395/10/6/855. Number: 6 Publisher: Multidisciplinary Digital Publishing Institute

    Article  Google Scholar 

  24. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708. https://doi.org/10.1109/TIP.2012.2214050

    Article  MathSciNet  Google Scholar 

  25. Nigon TJ, Mulla DJ, Rosen CJ, Cohen Y, Alchanatis V, Knight J, Rud R (2015) Hyperspectral aerial imagery for detecting nitrogen stress in two potato cultivars. Comput Electron Agri 112:36–46. https://doi.org/10.1016/j.compag.2014.12.018, https://www.sciencedirect.com/science/article/pii/S0168169914003287. Precision Agriculture

    Article  Google Scholar 

  26. Pongnumkul S, Chaovalit P, Surasvadi N (2015) Applications of smartphone-based sensors in agriculture: a systematic review of research. J Sensors 2015:e195308. https://doi.org/10.1155/2015/195308, https://www.hindawi.com/journals/js/2015/195308/. Publisher: Hindawi

    Article  Google Scholar 

  27. Shi Y, Wang N, Taylor R, Raun W (2015) Improvement of a ground-lidar-based corn plant population and spacing measurement system. Comput Electron Agri 112:92–101. https://doi.org/10.1016/j.compag.2014.11.026, https://www.sciencedirect.com/science/article/pii/S0168169914003093. Precision Agriculture

    Article  Google Scholar 

  28. Szeliski R (2006) Image alignment and stitching: a tutorial. Technical Report MSR-TR-2004-92, Microsoft Research, Microsoft Corporation One Microsoft Way Redmond, WA, 98052

  29. Tao C, Meng B, Wang Z (2017) Build panoramas on android phones

  30. Tetila EC, Machado BB, Astolfi G, de Souza Belete NA, Amorim WP, Roel AR, Pistori H (2020) Detection and classification of soybean pests using deep learning with uav images. Comput Electron Agri 179:105836. https://doi.org/10.1016/j.compag.2020.105836, https://www.sciencedirect.com/science/article/pii/S016816991831055X

    Article  Google Scholar 

  31. Tian H, Wang T, Liu Y, Qiao X, Li Y (2020) Computer vision technology in agricultural automation —a review. Inform Process Agri 7(1):1–19. https://doi.org/10.1016/j.inpa.2019.09.006, https://www.sciencedirect.com/science/article/pii/S2214317319301751

    Google Scholar 

  32. Twetman T (2015) Multi view image stitching of planar surfaces on mobile devices: large surface analog notes scanning. Ph.D. thesis, KTH ROYAL INSTITUTE OF TECHNOLOGY. http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1047082

  33. Wang A, Zhang W, Wei X (2019) A review on weed detection using ground-based machine vision and image processing techniques. Comput Electron Agri 158:226–240. https://doi.org/10.1016/j.compag.2019.02.005, https://www.sciencedirect.com/science/article/pii/S0168169918317150

    Article  Google Scholar 

  34. Wang J, Damevski K, Chen H (2015) Sensor data modeling and validating for wireless soil sensor network. Comput Electron Agri 112:75–82. https://doi.org/10.1016/j.compag.2014.12.016, https://www.sciencedirect.com/science/article/pii/S0168169914003263. Precision Agriculture

    Article  Google Scholar 

  35. Wang Q, Reimeier F, Wolter K (2016) Efficient image stitching through mobile offloading. Electron Notes Theor Comput Sci 327:125–146. https://doi.org/10.1016/j.entcs.2016.09.027, http://www.sciencedirect.com/science/article/pii/S157106611630072X

    Article  Google Scholar 

  36. Wang Z, Yang Z (2020) Review on image-stitching techniques. Multimed Syst 26(4):413–430. https://doi.org/10.1007/s00530-020-00651-y

    Article  Google Scholar 

  37. Wu M, Huang W, Niu Z, Wang Y, Wang C, Li W, Hao P, Yu B (2017) Fine crop mapping by combining high spectral and high spatial resolution remote sensing data in complex heterogeneous areas. Comput Electron Agri 139:1–9. https://doi.org/10.1016/j.compag.2017.05.003, https://www.sciencedirect.com/science/article/pii/S0168169916302460

    Article  Google Scholar 

  38. Xiong Y, Pulli K (2010) Fast panorama stitching for high-quality panoramic images on mobile phones. IEEE Trans Consum Electron 56(2):298–306. https://doi.org/10.1109/TCE.2010.5505931. Conference Name: IEEE Transactions on Consumer Electronics

    Article  Google Scholar 

  39. Yao W, Li Z (2015) Instant color matching for mobile panorama imaging. IEEE Signal Process Lett 22(1):6–10. https://doi.org/10.1109/LSP.2014.2345773. Conference Name: IEEE Signal Processing Letters

    Article  MathSciNet  Google Scholar 

  40. Yingen X, Pulli K (2010) Fast panorama stitching on mobile devices. In: 2010 Digest of technical papers international conference on consumer electronics (ICCE), pp 319–320. https://doi.org/10.1109/ICCE.2010.5419027. ISSN: 2158-4001

  41. Zhang J, Huang Y, Pu R, Gonzalez-Moreno P, Yuan L, Wu K, Huang W (2019) Monitoring plant diseases and pests through remote sensing technology: a review. Comput Electron Agri 165:104943. https://doi.org/10.1016/j.compag.2019.104943, https://www.sciencedirect.com/science/article/pii/S016816991930290X

    Article  Google Scholar 

  42. Zhang J, Qiu X, Wu Y, Zhu Y, Cao Q, Liu X, Cao W (2021) Combining texture, color, and vegetation indices from fixed-wing uas imagery to estimate wheat growth parameters using multivariate regression methods. Comput Electron Agri 185:106138. https://doi.org/10.1016/j.compag.2021.106138, https://www.sciencedirect.com/science/article/pii/S0168169921001563

    Article  Google Scholar 

  43. Zhang K, Wu Q, Chen Y (2021) Detecting soybean leaf disease from synthetic image using multi-feature fusion faster r-cnn. Comput Electron Agri 183:106064. https://doi.org/10.1016/j.compag.2021.106064, https://www.sciencedirect.com/science/article/pii/S016816992100082X

    Article  Google Scholar 

Download references

Funding

The author did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Pazouki.

Ethics declarations

Competing interests

The author has no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazouki, E. AgriBot: a mobile application for imaging farm fields. Multimed Tools Appl 81, 28917–28954 (2022). https://doi.org/10.1007/s11042-022-12777-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12777-4

Keywords

Navigation