Skip to main content

Advertisement

Log in

Automatic EEG channel selection for multiclass brain-computer interface classification using multiobjective improved firefly algorithm

  • 1178: Pattern Recognition for Adaptive User Interfaces
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Multichannel Electroencephalography-based Brain-Computer Interface (BCI) systems facilitate a communicating medium between the human brain and the outside world. BCI systems aim to translate human intentions into computer-based control commands by decoding the respective brain patterns. Moreover, Electroencephalography (EEG) analysis involves high-dimensional features that increase the computational burden of applied signal processing approaches. To minimize this overload caused by a large set of channels, we propose an automatic EEG channel selection method for multiclass Motor-Imagery (MI) classification. In this study, we developed a hybrid channel ranking procedure using Fisher information and the objective Firefly Algorithm (FA). Firstly, the preprocessed neural signals are used to extract spatial-temporal features using the Regularized Common Spatial Pattern with Aggregation (RCSPA) method. Then, objective FA with two input variables (Spectral Entropy and Lyapunov exponent) is used to compute a weighted score for each channel in the neighborhood of a candidate solution. Finally, a novel Channel Set Relevance Index (CSRI) is developed to rank channels using their respective weighted score and Fisher information. The RCSPA features of highly ranked channels are employed to discriminate different MI-tasks using the Regularized Support Vector Machine (RSVM) classifier. The proposed approach is cross-validated on three publicly available BCI competition datasets (BCI Competition IV- 2008 - IIA, BCI Competition IV- dataset 1, BCI competition III - dataset IVa) with varying numbers of channels. The validation results show that the proposed method achieved a superior classification accuracy (83.97% on dataset 1, 80.85% on dataset 2, and 84.19% on dataset 3) with fewer channels than other baseline methods. In addition, our method significantly reduced the BCI preparation time, making it effective to conduct multiple experimental sessions for a large pool of subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Agarwal S, Rani A, Singh V, Mittal AP (2017) EEG signal enhancement using cascaded S-Golay filter. Biomed Signal Process Control 36:194–204

    Article  Google Scholar 

  2. Alotaiby T, Abd El-Samie FE, Alshebeili SA, Ahmad I (2015) A review of channel selection algorithms for EEG signal processing. EURASIP J Adv Signal Process 2015(1):1–21

    Article  Google Scholar 

  3. Alyasseri ZAA, Khader AT, Al-Betar MA, Alomari OA (2020) Person identification using EEG channel selection with hybrid flower pollination algorithm. Pattern Recogn 105:107393

    Article  Google Scholar 

  4. Amin SU, Alsulaiman M, Muhammad G, Mekhtiche MA, Hossain MS (2019) Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Futur Gener Comput Syst 101:542–554

    Article  Google Scholar 

  5. Aydemir O, Ergün E (2019) A robust and subject-specific sequential forward search method for effective channel selection in brain computer interfaces. J Neurosci Methods 313:60–67

    Article  Google Scholar 

  6. Baig MZ, Aslam N, Shum HP (2020) Filtering techniques for channel selection in motor imagery EEG applications: a survey. Artif Intell Rev 53(2):1207–1232

    Article  Google Scholar 

  7. Bauer S, Nolte LP, Reyes M (2011, September) Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: International conference on medical image computing and computer-assisted intervention (pp. 354-361). Springer: Heidelberg

  8. Bein B (2006) Entropy. Best Pract Res Clin Anaesthesiol 20(1):101–109

    Article  Google Scholar 

  9. Beraldo G, Antonello M, Cimolato A, Menegatti E, Tonin L (2018, May) Brain-computer Interface meets ROS: a robotic approach to mentally drive telepresence robots. In: 2018 IEEE international conference on robotics and automation (ICRA) (pp. 4459-4464). IEEE

  10. Blankertz B, Muller KR, Krusienski DJ, Schalk G, Wolpaw JR, Schlogl A, Pfurtscheller G, Millan JR, Schroder M, Birbaumer N (2006) The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehab Eng 14(2):153–159

    Article  Google Scholar 

  11. Brunner C, Leeb R, Müller-Putz G, Schlögl A, Pfurtscheller G (2008) BCI competition 2008–Graz data set A. Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology, 16, 1–6

  12. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):1–27

    Article  Google Scholar 

  13. Chen Z, Wu C, Zhang Y, Huang Z, Ran B, Zhong M, Lyu N (2015) Feature selection with redundancy-complementariness dispersion. Knowl-Based Syst 89:203–217

    Article  Google Scholar 

  14. Corsi MC, Chavez M, Schwartz D, Hugueville L, Khambhati AN, Bassett DS, De Vico Fallani F (2019) Integrating EEG and MEG signals to improve motor imagery classification in brain–computer interface. Int J Neural Syst 29(01):1850014

    Article  Google Scholar 

  15. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  Google Scholar 

  16. Fauzi H, Shapiai MI, Abdullah SS, Ibrahim Z (2018, December) Automatic energy extraction methods for EEG channel selection. In: 2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC) (pp. 70-75). IEEE

  17. Feng JK, Jin J, Daly I, Zhou J, Niu Y, Wang X, Cichocki A (2019) An optimized channel selection method based on multifrequency CSP-rank for motor imagery-based BCI system. Comput Intell Neurosci 2019

  18. Gaur P, Pachori RB, Wang H, Prasad G (2018) A multiclass EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry. Expert Syst Appl 95:201–211

    Article  Google Scholar 

  19. Ghaemi A, Rashedi E, Pourrahimi AM, Kamandar M, Rahdari F (2017) Automatic channel selection in EEG signals for classification of left or right hand movement in brain computer interfaces using improved binary gravitation search algorithm. Biomed Signal Process Control 33:109–118

    Article  Google Scholar 

  20. Gonzalez A, Nambu I, Hokari H, Wada Y (2014) EEG channel selection using particle swarm optimization for the classification of auditory event-related potentials. Sci World J (2014) 350270, https://doi.org/10.1155/2014/350270

  21. Gorry PA (1990) General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method. Anal Chem 62(6):570–573

    Article  Google Scholar 

  22. Hancer E, Xue B, Zhang M (2018) Differential evolution for filter feature selection based on information theory and feature ranking. Knowl-Based Syst 140:103–119

    Article  Google Scholar 

  23. Handiru VS, Prasad VA (2016) Optimized bi-objective EEG channel selection and cross-subject generalization with brain–computer interfaces. IEEE Trans Human-Mach Syst 46(6):777–786

    Article  Google Scholar 

  24. Hastie T, Rosset S, Tibshirani R, Zhu J (2004) The entire regularization path for the support vector machine. J Mach Learn Res 5:1391–1415

    MATH  Google Scholar 

  25. Hsu H, Lachenbruch PA (2008) Paired t test. Wiley Encyclopedia of Clinical Trials, 1–3, https://doi.org/10.1002/0470011815.b2a15112

  26. Joseph AFA, Govindaraju C (2019) Channel selection using glow swarm optimization and its application in line of sight secure communication. Clust Comput 22(5):10801–10808

    Article  Google Scholar 

  27. Kantz H (1994) A robust method to estimate the maximal Lyapunov exponent of a time series. Phys Lett A 185(1):77–87

    Article  Google Scholar 

  28. Kee CY, Ponnambalam SG, Loo CK (2015) Multiobjective genetic algorithm as channel selection method for P300 and motor imagery data set. Neurocomputing 161:120–131

    Article  Google Scholar 

  29. Khaire UM, Dhanalakshmi R (2019) Stability of feature selection algorithm: a review. J King Saud Univ-Comput Inf Sci

  30. Lan T, Erdogmus D, Adami A, Pavel M, Mathan S (2006, January) Salient EEG channel selection in brain computer interfaces by mutual information maximization. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (pp. 7064–7067). IEEE

  31. Li Y, Pan J, Wang F, Yu Z (2013) A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control. IEEE Trans Biomed Eng 60(11):3156–3166

    Article  Google Scholar 

  32. Chang C-C, Lin C-J (2001) LIBSVM a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  33. Lin X, Yang F, Zhou L, Yin P, Kong H, Xing W, Lu X, Jia L, Wang Q, Xu G (2012) A support vector machine-recursive feature elimination feature selection method based on artificial contrast variables and mutual information. J Chromatogr B 910:149–155

    Article  Google Scholar 

  34. Liu J, Meng H, Li M, Zhang F, Qin R, Nandi AK (2018) Emotion detection from EEG recordings based on supervised and unsupervised dimension reduction. Concurrency and Computation: Practice and Experience 30(23):e4446

    Article  Google Scholar 

  35. Lu H, Eng HL, Guan C, Plataniotis KN, Venetsanopoulos AN (2010) Regularized common spatial pattern with aggregation for EEG classification in small-sample setting. IEEE Trans Biomed Eng 57(12):2936–2946

    Article  Google Scholar 

  36. McKight PE, Najab J (2010) Kruskal–wallis test. In: The corsini encyclopedia of psychology, Wiley, New York, 1–1

  37. Meisheri H, Ramrao N, Mitra S (2018) Multiclass common spatial pattern for EEG based brain computer interface with adaptive learning classifier. arXiv preprint arXiv:1802.09046

    Google Scholar 

  38. Mohamed EA, Yusoff MZ, Malik AS, Bahloul MR, Adam DM, Adam IK (2018) Comparison of EEG signal decomposition methods in classification of motor-imagery BCI. Multimed Tools Appl 77(16):21305–21327

    Article  Google Scholar 

  39. Politi A (2013) Lyapunov exponent. Scholarpedia 8(3):2722

    Article  Google Scholar 

  40. Press WH, Teukolsky SA (1990) Savitzky-Golay smoothing filters. Comput Phys 4(6):669–672

    Article  Google Scholar 

  41. Pudil P, Novovičová J, Kittler J (1994) Floating search methods in feature selection. Pattern Recogn Lett 15(11):1119–1125

    Article  Google Scholar 

  42. Qiu Z, Jin J, Lam HK, Zhang Y, Wang X, Cichocki A (2016) Improved SFFS method for channel selection in motor imagery based BCI. Neurocomputing 207:519–527

    Article  Google Scholar 

  43. Rissanen JJ (1996) Fisher information and stochastic complexity. IEEE Trans Inf Theory 42(1):40–47

    Article  MATH  Google Scholar 

  44. Schröder M, Lal TN, Hinterberger T, Bogdan M, Hill NJ, Birbaumer N, Rosenstiel W, Schölkopf B (2005) Robust EEG channel selection across subjects for brain-computer interfaces. EURASIP J Adv Signal Process 2005(19):1–10

    Article  MATH  Google Scholar 

  45. Schwemmer MA, Skomrock ND, Sederberg PB, Ting JE, Sharma G, Bockbrader MA, Friedenberg DA (2018) Meeting brain–computer interface user performance expectations using a deep neural network decoding framework. Nat Med 24(11):1669–1676

    Article  Google Scholar 

  46. Shi B, Wang Q, Yin S, Yue Z, Huai Y, Wang J (2021) A binary harmony search algorithm as channel selection method for motor imagery-based BCI. Neurocomputing 443:12–25

    Article  Google Scholar 

  47. Sreeja SR, Samanta D (2020) Distance-based weighted sparse representation to classify motor imagery EEG signals for BCI applications. Multimed Tools Appl 79(19):13775–13793

    Article  Google Scholar 

  48. Su Y, Li Y, Wang S (2015, July) Filter ensemble regularized common spatial pattern for EEG classification. In: Seventh international conference on digital image processing (ICDIP 2015) (Vol. 9631, p. 963124). International Society for Optics and Photonics

  49. Subhani AR, Mumtaz W, Kamil N, Saad NM, Nandagopal N, Malik AS (2017, December) MRMR based feature selection for the classification of stress using EEG. In: 2017 Eleventh International Conference on Sensing Technology (ICST) (pp. 1-4). IEEE

  50. Tangermann M, Müller KR, Aertsen A, Birbaumer N, Braun C, Brunner C, Leeb R, Mehring C, Miller KJ, Müller-Putz GR, Nolte G, Pfurtscheller G, Preissl H, Schalk G, Schlögl A, Vidaurre C, Waldert S, Blankertz B (2012) Review of the BCI competition IV. Front Neurosci 6:55

    Article  Google Scholar 

  51. Tiwari A, Chaturvedi A (2019, November) A multiclass EEG signal classification model using spatial feature extraction and XGBoost algorithm. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4169-4175). IEEE

  52. Tiwari A, Chaturvedi A (2021) A Novel Channel selection method for BCI classification using Dynamic Channel relevance. IEEE Access 9:126698–126716

    Article  Google Scholar 

  53. Wang L (2005) Support vector machines: theory and applications (Vol. 177). Springer Science & Business Media, 2005

  54. Wang Y, Gao S, Gao X (2006, January) Common spatial pattern method for channel selelction in motor imagery based brain-computer interface. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (pp. 5392–5395). IEEE

  55. Wang M, Qu W, Chen WY (2018) Hybrid sensing and encoding using pad phone for home robot control. Multimed Tools Appl 77(9):10773–10786

    Article  Google Scholar 

  56. Wu SJ, Chow PT (1995) Steady-state genetic algorithms for discrete optimization of trusses. Comput Struct 56(6):979–991

    Article  MATH  Google Scholar 

  57. Xue H, Chen S, Yang Q (2011) Structural regularized support vector machine: a framework for structural large margin classifier. IEEE Trans Neural Netw 22(4):573–587

    Article  Google Scholar 

  58. Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2(2):78–84

    Article  Google Scholar 

  59. Yang J, Singh H, Hines EL, Schlaghecken F, Iliescu DD, Leeson MS, Stocks NG (2012) Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach. Artif Intell Med 55(2):117–126

    Article  Google Scholar 

  60. Zgallai W, Brown JT, Ibrahim A, Mahmood F, Mohammad K, Khalfan M, ... & Hamood N (2019, March) Deep learning AI application to an EEG driven BCI smart wheelchair. In: 2019 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 1–5). IEEE

  61. Zhang A, Yang B, Huang L (2008, May) Feature extraction of EEG signals using power spectral entropy. In: 2008 International Conference on BioMedical Engineering and Informatics (Vol. 2, pp. 435-439). IEEE

  62. Zhang Y, Zhou T, Wu W, Xie H, Zhu H, Zhou G, Cichocki A (2021) Improving EEG decoding via clustering-based multitask feature learning. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3053576

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Tiwari.

Ethics declarations

Disclosure statement

For writing the article, the authors received academic infrastructure support from the Indian Institute of Technology (BHU), Varanasi. Moreover, the authors also declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, A., Chaturvedi, A. Automatic EEG channel selection for multiclass brain-computer interface classification using multiobjective improved firefly algorithm. Multimed Tools Appl 82, 5405–5433 (2023). https://doi.org/10.1007/s11042-022-12795-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12795-2

Keywords

Navigation