Skip to main content
Log in

Determination of COPD severity from chest CT images using deep transfer learning network

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The purpose of this study is to present a solution to the problem of detecting the severity of Chronic Obstructive Pulmonary Disease (COPD) from chest CT images using deep transfer learning network. The study has a novelty in terms of classifying the severity of COPD with machine learning methods for the first time in the literature. Transfer learning has been preferred because of its proven performance in image analysis and classification. In this study, a dataset containing a total of 1815 CT images from 121 patients with moderate, severe and very severe COPD was used. Lung parenchyma was first segmented from CT images using HSV color space thresholding. Then Inception-V3 model was trained and tested on the segmented image dataset for COPD severity classification. The tests were repeated 10 times. The proposed model was able to detect the severity level of COPD with an average accuracy of 96.79% and a maximum of 97.98%. The classification result proved that the severity of COPD can be classified with very high performance. Thus, the applied transfer learning is promising in medical sciences and can assist to radiologists in making quick and accurate decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Dataset was taken from Sivas Cumhuriyet University Training and Research Hospital and corporate permission is required for data sharing.

Code Availability

Computer codes are publicly available on https://drive.google.com/drive/folders/12JTXMbPKjyX4gOq6a4TBO1NYb8SvXBs5?usp=sharing

References

  1. Ahmed J, Vesal S, Durlak F, Kaergel R, Ravikumar N, Remy-Jardin M, Maier A (2020) COPD classification in CT images using a 3D convolutional neural network. In: Tolxdorff T, Deserno T, Handels H, Maier A, Maier-Hein K, Palm C (eds) Bildverarbeitung für die Medizin 2020. Informatik aktuell. https://doi.org/10.1007/978-3-658-29267-6_8arXiv:2001.01100. Springer, Wiesbaden

  2. Amalakuhan B, Kiljanek L, Parvathaneni A, Hester M, Cheriyath P, Fischman D (2012) A prediction model for COPD readmissions: catching up, catching our breath, and improving a national problem. J Community Hosp Intern Med Perspect 2(1). https://doi.org/10.3402/jchimp.v2i1.9915. PMID: 23882354; PMCID: PMC3714087

  3. Celli BR, Decramer M, Wedzicha JA, Wilson KC, Agustí A A, Criner GJ, MacNee W, Make BJ, Rennard SI, Stockley RA, Vogelmeier C, Anzueto A, Au DH, Barnes PJ, Burgel PR, Calverley PM, Casanova C, Clini EM, Cooper CB, Coxson HO, Dusser DJ, Fabbri LM, Fahy B, Ferguson GT, Fisher A, Fletcher MJ, Hayot M, Hurst JR, Jones PW, Mahler DA, Maltais F, Mannino DM, Martinez FJ, Miravitlles M, Meek PM, Papi A, Rabe KF, Roche N, Sciurba FC, Sethi S, Siafakas N, Sin DD, Soriano JB, Stoller JK, Tashkin DP, Troosters T, Verleden GM, Verschakelen J, Vestbo J, Walsh JW, Washko GR, Wise RA, Wouters EF, ZuWallack RL (2015) ATS/ERS Task force for COPD research. An official American Thoracic Society/European Respiratory Society statement: research questions in COPD. Eur Respir Rev 24(136):159–72. https://doi.org/10.1183/16000617.00000315

    Article  Google Scholar 

  4. Chollet F (2015) Keras. https://keras.io

  5. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B (2019) A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol 110:12–22. https://doi.org/10.1016/j.jclinepi.2019.02.004. PMID: 30763612

    Article  Google Scholar 

  6. Delen D, Oztekin A, Kong ZJ (2010) A machine learning-based approach to prognostic analysis of thoracic transplantations. Artif Intell Med 49 (1):33–42. https://doi.org/10.1016/j.artmed.2010.01.002. PMID: 20153956

    Article  Google Scholar 

  7. Du R, Qi S, Feng J, Xia S, Kang Y, Qian W, Yao YD (2020) Identification of COPD from multi-view snapshots of 3D lung airway tree via deep CNN. IEEE Access 8:38907–38919. https://doi.org/10.1109/ACCESS.2020.2974617

    Article  Google Scholar 

  8. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874. https://doi.org/10.1016/j.patrec.2005.10.010

    Article  MathSciNet  Google Scholar 

  9. Ganesan P, Rajini V, Sathish BS, Shaik KB (2014) HSV color space based segmentation of region of interest in satellite images. In: 2014 International conference on control, Instrumentation, Communication and Computational Technologies (ICCICCT). https://doi.org/10.1109/ICCICCT.2014.6992938, pp 101–105

  10. Gietema HA, Müller NL, Fauerbach PV, Sharma S, Edwards LD, Camp PG, Coxson HO (2011) Evaluation of COPD longitudinally to identify predictive surrogate endpoints (ECLIPSE) investigators. Quantifying the extent of emphysema: factors associated with radiologists’ estimations and quantitative indices of emphysema severity using the ECLIPSE cohort. Acad Radiol 18(6):661–71. https://doi.org/10.1016/j.acra.2011.01.011. PMID: 21393027

    Article  Google Scholar 

  11. Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT Press

  12. Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS (2016) Deep learning for visual understanding: a review. Neurocomputing 187:27–48. https://doi.org/10.1016/j.neucom.2015.09.116

    Article  Google Scholar 

  13. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551. https://doi.org/10.1162/neco.1989.1.4.541

    Article  Google Scholar 

  14. Leidy NK, Malley KG, Steenrod AW, Mannino DM, Make BJ, Bowler RP, Thomashow BM, Barr RG, Rennard SI, Houfek JF, Yawn BP, Han MK, Meldrum CA, Bacci ED, Walsh JW, Martinez F (2016) Insight into best variables for COPD case identification: A random forests analysis. Chronic Obstr Pulm Dis 3(1):406–418. https://doi.org/10.15326/jcopdf.3.1.2015.0144. PMID: 26835508; PMCID: PMC4729451

    Google Scholar 

  15. Leng L, Yang Z, Kim C, Zhang Y (2020) A light-weight practical framework for feces detection and trait recognition. Sensors 20(9):2644. https://doi.org/10.3390/s20092644

    Article  Google Scholar 

  16. Lynch DA, Austin JH, Hogg JC, Grenier PA, Kauczor HU, Bankier AA, Barr RG, Colby TV, Galvin JR, Gevenois PA, Coxson HO, Hoffman EA, Newell JD Jr, Pistolesi M, Silverman EK, Crapo JD (2015) CT-definable subtypes of chronic obstructive pulmonary disease: A statement of the Fleischner Society. Radiology 277(1):192–205. https://doi.org/10.1148/radiol.2015141579. PMID: 25961632; PMCID: PMC4613878

    Article  Google Scholar 

  17. Martin A, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mane D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viegas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems (software available from: tensorflow.org)

  18. Moll M, Qiao D, Regan EA, Hunninghake GM, Make BJ, Tal-Singer R, McGeachie MJ, Castaldi PJ, San Jose Estepar R, Washko GR, Wells JM, LaFon D, Strand M, Bowler RP, Han MK, Vestbo J, Celli B, Calverley P, Crapo J, Silverman EK, Hobbs BD, Cho MH (2020) Machine learning and prediction of all-cause mortality in COPD. Chest 158(3):952–964. https://doi.org/10.1016/j.chest.2020.02.079

    Article  Google Scholar 

  19. Naylor CD (2018) On the prospects for a (deep) learning health care system. JAMA 320 (11):1099–1100. https://doi.org/10.1001/jama.2018.11103. PMID: 30178068

    Article  Google Scholar 

  20. Nichols JA, Herbert Chan HW, Baker MAB (2019) Machine learning: applications of artificial intelligence to imaging and diagnosis. Biophys Rev 11(1):111–118. https://doi.org/10.1007/s12551-018-0449-9. PMID: 30182201; PMCID: PMC6381354

    Article  Google Scholar 

  21. Saravanan G, Yamuna G, Nandhini S (2016) Real time implementation of RGB to HSV/HSI/HSL and its reverse color space models. In: 2016 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur. https://doi.org/10.1109/ICCSP.2016.7754179, pp 462–466

  22. Saria S, Butte A, Sheikh A (2018) Better medicine through machine learning: What’s real, and what’s artificial? PLoS Med 15(12):e1002721. https://doi.org/10.1371/journal.pmed.1002721. PMID: 30596635; PMCID: PMC6312199

    Article  Google Scholar 

  23. Smith AR (1978) Color gamut transform pairs. ACM SIGGRAPH Computer Graphics 12(3):12–19. https://doi.org/10.1145/965139.807361

    Article  Google Scholar 

  24. Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2016) Inception-v4, Inception-ResNet and the impact of residual connections on learning. arXiv:1602.07261

  25. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2014) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. arXiv:1409.4842

  26. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2015) Rethinking the inception architecture for computer vision. arXiv:1512.00567

  27. Sørensen L, Nielsen M, Petersen J, Pedersen JH, Dirksen A, de Bruijne M (2020) Chronic obstructive pulmonary disease quantification using CT texture analysis and densitometry: Results from the Danish lung cancer screening trial. AJR Am J Roentgenol 214(6):1269–1279. https://doi.org/10.2214/AJR.19.22300. PMID: 32255690

    Article  Google Scholar 

  28. Vestbo J, Hurd SS, Agustí A G, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, Stockley RA, Sin DD, Rodriguez-Roisin R (2013) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 187(4):347–65. https://doi.org/10.1164/rccm.201204-0596PP

    Article  Google Scholar 

  29. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, Celli BR, Chen R, Decramer M, Fabbri LM, Frith P, Halpin DM, López Varela MV, Nishimura M, Roche N, Rodriguez-Roisin R, Sin DD, Singh D, Stockley R, Vestbo J, Wedzicha JA, Agustí A (2017) Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med 195 (5):557–582. https://doi.org/10.1164/rccm.201701-0218PP

    Article  Google Scholar 

  30. Vora S, Shah C (2019) COPD Classification using machine learning algorithms. International Research Journel of Engineering and Technology 6(4):608–611

    Google Scholar 

  31. Yang Z, Leng L, Kim BG (2019) Stoolnet for color classification of stool medical images. Electronics 8(12):1464. https://doi.org/10.3390/electronics8121464

    Article  Google Scholar 

  32. Zhang Y, Li M, Han S, Ren Q, Shi J (2019) Intelligent identification for rock-mineral microscopic images using ensemble machine learning algorithms. Sensors 19(18):3914. https://doi.org/10.3390/s19183914

    Article  Google Scholar 

Download references

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the presented idea. I. Salk and O.T. Dogan prepared collected the dataset and labelled the images. Ö. Polat designed the model and performed the experiments. All authors wrote the manuscript

Corresponding author

Correspondence to Özlem Polat.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of Interests

The authors declare that they have no conflict of interest/competing interests to disclose.

Additional information

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, Ö., Şalk, İ. & Doğan, Ö.T. Determination of COPD severity from chest CT images using deep transfer learning network. Multimed Tools Appl 81, 21903–21917 (2022). https://doi.org/10.1007/s11042-022-12801-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12801-7

Keywords

Navigation